

frePPLe data admin

A django-based framework for rapid development of data management applications.

Spreadsheet are omnipresent in any company. When the process grows beyond the limits
of Excel, you need a tool to manage your data in a more scalable, robust,
secure and collaborative way.

FrePPLe data admin provides a framework for developing such data management
applications with a low code, short learning curve approach.

Home page: https://frepple.org/

Live demo: https://demo.frepple.com/

Source code: https://github.com/frePPLe/frepple-data-admin

User forum: https://github.com/frePPLe/frepple-data-admin/discussions

Documentation: https://frepple-data-admin.readthedocs.io/en/latest/

Release notes: https://frepple-data-admin.readthedocs.io/en/latest/release-notes.html

	Getting started
	Installation

	Running the example app

	Your first app

	User guide
	Logging in and logging out

	Home screen

	Changing your password

	Navigation

	Data maintenance

	Filtering data

	Sorting data

	Favorites

	Selecting time buckets

	Exporting data

	Data source URL

	Importing data

	Customizing a report

	User preferences

	User permissions and roles

	Messages

	Inbox

	Tasks

	Execution screen

	What-if scenarios

	Integration guide
	Excel files

	CSV text files

	Database access

	REST API

	Command line

	Remote commands

	Developer guide
	Creating an custom theme

	Adding or customizing a report

	Translating the user interface

	Configuring multiple models in the user interface

	Upgrade an existing installation

	Release notes
	2.0.0 (Upcoming release)

	1.0.0 (2021/04/18)

Getting started

This chapter aims to get you started quickly and easily.

	Installation
	Prerequisites

	Install the Python package

	Create a PostgreSQL database user

	Running the example app
	Edit the djangosettings.py configuration file

	Initialize the database

	Run the web server

	Your first app
	Initialize your app

	Register your app

	Define the database models

	Create tables and fields in the database

	Define a REST API for your models

	Create editing forms for your models

	Define new reports

	Register the URLs of the new reports

	Add the reports to the menu

	Add demo data

	Add custom administration commands

	Add unit tests

	Even more information!

Installation

	Prerequisites

	Install the Python package

	Create a PostgreSQL database user

Prerequisites

You will need:

	Python from https://www.python.org/ (any version >= 3.6)

	PostgreSQL from https://www.postgresql.org/ (any version >= 9)

Install the Python package

Download the source code from github https://github.com/frePPLe/frepple-data-admin
into a local folder on your machine.

Open a command prompt in that folder and install the third party Python
packages data-admin depends on. Using a Python virtual environment is supported.

pip3 install -r requirements.txt

Create a PostgreSQL database user

Next, create a database user for data admin. From a psql prompt or
pgadmin, you can do this with the following SQL command:

create role frepple with login superuser password 'frepple';

The role name, password and privileges can be changed to your taste. The
above is just a quick default to get started with.

Running the example app

In this section, we’ll run the example application that comes with the installation.

	Edit the djangosettings.py configuration file

	example_initialize

	Run the web server

Edit the djangosettings.py configuration file

The python package provides a configuration file “djangosettings.py”.
Open this file with a text editor and review the following sections:

	DATABASES:

The minimal content for this block is as follows. The USER and PASSWORD should match
the database user you created in the previous step.

 DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.postgresql",
 # Database name
 "NAME": "data_admin",
 # Role name when using md5 authentication.
 # Leave as an empty string when using peer or ident authencation.
 "USER": "frepple",
 # Role password when using md5 authentication.
 # Leave as an empty string when using peer or ident authencation.
 "PASSWORD": "frepple",
 # When using TCP sockets specify the hostname, the ip4 address or the ip6 address here.
 # Leave as an empty string to use Unix domain socket ("local" lines in pg_hba.conf).
 "HOST": "",
 # Specify the port number when using a TCP socket.
 "PORT": "",
 "OPTIONS": {},
 "CONN_MAX_AGE": 60,
 "TEST": {
 "NAME": "test_data_admin" # Database name used when running the test suite.
 },
 "FILEUPLOADFOLDER": os.path.normpath(
 os.path.join(FREPPLE_LOGDIR, "data", "default")
),
 "SECRET_WEBTOKEN_KEY": SECRET_KEY,
 }
 }

	INSTALLED_APPS:

This setting configures the apps that will be deployed on your web server.

The minimal content for this block is as follows. Notice the “example1” app
at a specific place in the list.

 INSTALLED_APPS = (
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 "data_admin.boot",
 "data_admin_examples.example1", # <<< The example app
 "data_admin.execute",
 "data_admin.common",
 "django_filters",
 "rest_framework",
 "django_admin_bootstrapped",
 "django.contrib.admin",
)

Initialize the database

With the following commands we will create a database, build all database tables and load some sample data.

>> frepplectl.py createdatabase

 Executing SQL statement: create database "data_admin" encoding = 'UTF8'

>> frepplectl.py migrate

 Operations to perform:
 Apply all migrations: admin, auth, common, contenttypes, example1, execute
 Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0001_initial... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying auth.0008_alter_user_username_max_length... OK
 Applying auth.0009_alter_user_last_name_max_length... OK
 Applying auth.0010_alter_group_name_max_length... OK
 Applying auth.0011_update_proxy_permissions... OK
 Applying common.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying admin.0003_logentry_add_action_flag_choices... OK
 Applying example1.0001_initial... OK
 Applying execute.0001_initial... OK

>> frepplectl.py loaddata example1

 Installed 29 object(s) from 1 fixture(s)

Run the web server

Now, we can run the web server and use data-admin from your browser.
If all goes well, you will see a message with the URL.

>> frepplectl.py runserver

 INFO Watching for file changes with StatReloader
 Performing system checks...

 System check identified no issues (1 silenced).
 Django version 2.2.17, using settings 'data_admin.settings'
 Starting development server at http://127.0.0.1:8000/
 Quit the server with CTRL-BREAK.

You can now open your favorite browser on http://127.0.0.1:8000/.
A default user admin is created automatically with password admin.

Your first app

In this section, you’ll start building your own app.

	Initialize your app

	Register your app

	Define the database models

	Create tables and fields in the database

	Define a REST API for your models

	Create editing forms for your models

	Define new reports

	Register the URLs of the new reports

	Add the reports to the menu

	Add demo data

	Add custom administration commands

	Add unit tests

	Even more information!

Initialize your app

In the previous section you used the example app. In your installation folder you should be
able to find its source code in the folder data_admin_examples/example1. You can also see
it online at https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin_examples/example1

An app is nothing more than a python package with a specifically structured content. The steps
will walk you through the process of adding your own app.

Create a new folder my_app in your data_admin_examples folder and add an empty __init__.py file in it.

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py

Register your app

Next, register the app in the web server.

Open the djangosettings.py file and add a new line in the INSTALLED_APPS sections.
Note that the ordering of the apps is important - apps higher in the list can
override functionality of apps lower in the list.

 INSTALLED_APPS = (
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 "data_admin.boot",
 "data_admin_examples.example1", # <<< The example app
 "data_admin_examples.my_app", # <<< Your own app
 "data_admin.execute",
 "data_admin.common",
 "django_filters",
 "rest_framework",
 "django_admin_bootstrapped",
 "django.contrib.admin",
)

Define the database models

Add a file called models.py to describe new database models. It defines
the database tables, their fields and indexes.

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py

A minimal example looks as follows. An online copy is available
on https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin/docs/getting_started/my_app/models.py

from django.db import models
from django.utils.translation import ugettext_lazy as _
from data_admin.common.models import AuditModel

class My_Model(AuditModel):
 # Database fields
 name = models.CharField(_("name"), max_length=300, primary_key=True)
 charfield = models.CharField(
 _("charfield"),
 max_length=300,
 null=True,
 blank=True,
 help_text=_("A sample character field"),
)
 booleanfield = models.BooleanField(
 _("booleanfield"),
 blank=True,
 default=True,
 help_text=_("A sample boolean field"),
)
 decimalfield = models.DecimalField(
 _("decimalfield"),
 max_digits=20,
 decimal_places=8,
 default="0.00",
 help_text=_("A sample decimal field"),
)

 class Meta(AuditModel.Meta):
 db_table = "my_model" # Name of the database table
 verbose_name = _("my model") # A translatable name for the entity
 verbose_name_plural = _("my models") # Plural name
 ordering = ["name"]

This file only declares the model structure. The actual table will be created in a
later step.

You can find all details on models and fields on https://docs.djangoproject.com/en/2.2/ref/models/fields/

Create tables and fields in the database

Now we create database tables in the PostgreSQL database for each of your models.
This is done by in two steps.

In the first step we generate a Python file that defines the
evolution of your database model.

frepplectl makemigrations my_app

 Migrations for 'my_app':
 data_admin_examples\my_app\migrations\0001_initial.py
 - Create model My_Model

The command created a new folder in your app:

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | |- __init__.py
 | |- 0001_initial.py

It is very important to run the makemigration script after EVERY update of the models.py file.
For every change an extra migration file is generated.

In a second step you will actually execute the migrations generated in the previous
step and create the database tables. This command will incrementally bring the database
schema up to date. The database schema migration allows upgrading between different
versions of your app without loss of data and without recreating the database from scratch.

frepplectl.py migrate

 Operations to perform:
 Apply all migrations: admin, auth, common, contenttypes, example1, execute, my_app
 Running migrations:
 Applying my_app.0001_initial... OK

The first step is done by the developer that is updating the models.py file. The second
step is executed by everybody that is installing your app (or upgrading it to a new release).
You can find all details on migrations on https://docs.djangoproject.com/en/2.2/topics/migrations/

Define a REST API for your models

The file serializers.py defines a REST API for your models. You can explore the REST API from
the menu “help/REST API help”. An online copy is available
on https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin/docs/getting_started/my_app/serializers.py

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py

[image: A REST API for your model]
from django_filters import rest_framework as filters
from rest_framework_bulk.drf3.serializers import BulkListSerializer, BulkSerializerMixin
from data_admin.common.api.views import (
 frePPleListCreateAPIView,
 frePPleRetrieveUpdateDestroyAPIView,
)
from data_admin.common.api.serializers import ModelSerializer
from .models import My_Model

class MyModelFilter(filters.FilterSet):
 class Meta:
 model = My_Model
 fields = {
 "name": ["exact", "in", "contains"],
 "charfield": ["exact", "contains"],
 "booleanfield": ["exact"],
 "decimalfield": ["exact", "in", "gt", "gte", "lt", "lte"],
 "source": ["exact", "in"],
 "lastmodified": ["exact", "in", "gt", "gte", "lt", "lte"],
 }
 filter_fields = ("name", "charfield", "booleanfield", "decimalfield")

class MyModelSerializer(BulkSerializerMixin, ModelSerializer):
 class Meta:
 model = My_Model
 fields = ("name", "charfield", "booleanfield", "decimalfield")
 list_serializer_class = BulkListSerializer
 update_lookup_field = "name"
 partial = True

class MyModelSerializerAPI(frePPleListCreateAPIView):
 queryset = My_Model.objects.all()
 serializer_class = MyModelSerializer
 filter_class = MyModelFilter

You can find all details on creating REST APIs on https://www.django-rest-framework.org/

Create editing forms for your models

The file admin.py defines a form to edit objects of your models.
An online copy is available
on https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin/docs/getting_started/my_app/admin.py

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py
 | |- admin.py

[image: Editing form for your model]
from django.utils.translation import gettext_lazy as _
from data_admin.admin import data_site
from data_admin.common.adminforms import MultiDBModelAdmin
from .models import My_Model

@admin.register(My_Model, site=data_site)
class My_Model_Admin(MultiDBModelAdmin):
 model = My_Model
 fields = ("name", "charfield", "booleanfield", "decimalfield")
 save_on_top = True
 # Defines tabs shown on the edit form
 tabs = [
 {
 "name": "edit",
 "label": _("edit"),
 "view": "admin:my_app_my_model_change",
 "permissions": "my_app.change_my_model",
 },
 {
 "name": "comments",
 "label": _("comments"),
 "view": "admin:my_app_my_model_comment",
 },
 {
 "name": "history",
 "label": _("History"),
 "view": "admin:my_app_my_model_history",
 },
]

You can find all details on admin forms on https://docs.djangoproject.com/en/2.2/ref/contrib/admin/

Define new reports

New reports are defined in a file views.py. The classes in this file
typically will run SQL statements to retrieve data from the database, apply
the correct business logic and return HTML code to the user’s browser.

In this example we will inherit from a class that allows us to display
an editable grid for our new model. An online copy is available on
https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin/docs/getting_started/my_app/views.py

[image: List view for your model]
data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py
 | |- admin.py
 | |- views.py

from django.utils.translation import gettext_lazy as _

from data_admin.common.report import (
 GridReport,
 GridFieldText,
 GridFieldNumber,
 GridFieldBoolNullable,
 GridFieldLastModified,
)
from .models import My_Model

class MyModelList(GridReport):
 """
 This report show an editable grid for your models.
 You can sort data, filter data, import excel files, export excel files.
 """
 title = _("My models")
 basequeryset = My_Model.objects.all()
 model = My_Model
 frozenColumns = 1
 rows = (
 GridFieldText(
 "name",
 title=_("name"),
 key=True,
 formatter="detail",
 extra='"role":"my_app/my_model"',
),
 GridFieldText("charfield", title=_("charfield")),
 GridFieldBoolNullable("booleanfield", title=_("category")),
 GridFieldNumber("decimalfield", title=_("decimalfield")),
 GridFieldText("source", title=_("source")),
 GridFieldLastModified("lastmodified"),
)

More advanced views can also separate the python business logic from
the HTML rendering. This example app doesn’t explore this.

See this page for more details
on the structure of the report code.

Register the URLs of the new reports

The url where the report is published is defined in the file urls.py.
An online copy is available on
https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin/docs/getting_started/my_app/urls.py

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py
 | |- admin.py
 | |- views.py
 | |- urls.py

from django.conf.urls import url
from .views import MyModelList
from .serializers import MyModelSerializerAPI

Automatically add these URLs when the application is installed
autodiscover = True

urlpatterns = [
 # Model list reports, which override standard admin screens
 url(
 r"^data/my_app/my_model/$",
 MyModelList.as_view(),
 name="my_app_my_model_changelist",
),
 # URLs for the REST API
 url(r"^api/my_app/my_model/$", MyModelSerializerAPI.as_view()),
]

You can find more detailed information on https://docs.djangoproject.com/en/2.2/topics/http/urls/

Add the reports to the menu

The menu is defined in the file menu.py. In the screenshot above
you can see your own menu. With the menu, the users have access to the
reports, views and urls you defined in the previous steps.

An online copy is available
on https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin/docs/getting_started/my_app/menu.py

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py
 | |- admin.py
 | |- views.py
 | |- urls.py
 | |- menu.py

from django.utils.translation import ugettext as _
from data_admin.menu import menu
from .models import My_Model
from .views import MyModelList

menu.addGroup("my_menu", label=_("My App"), index=1)
menu.addItem(
 "my_menu",
 "my_model",
 url="/data/my_app/my_model/",
 report=MyModelList,
 index=100,
 model=My_Model,
)
menu.addItem(
 "my_menu",
 "google",
 url="http://google.com",
 window=True,
 label=_("link to my company"),
 prefix=False,
 index=300,
)

Add demo data

In the subfolder fixtures you can define demo datasets that can
be loaded with the command “frepplectl loaddata” or interactively
in the execution screen.

Fixtures are text files in JSON format. They can be loaded from the
command line, from the execution screen (see the “my_app_data” entry in the screenshot below)
or through a web API.

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py
 | |- admin.py
 | |- views.py
 | |- urls.py
 | |- menu.py
 | |- fixtures
 | | |- my_app_data.json

[
{"model": "my_app.my_model", "fields": {"name": "sample #1", "charfield": "A", "booleanfield": true, "decimalfield": 999.0}},
{"model": "my_app.my_model", "fields": {"name": "sample #2", "charfield": "B", "booleanfield": false, "decimalfield": 666.0}}
]

[image: Loading my own dataset]
You can find more detailed information on https://docs.djangoproject.com/en/2.2/howto/initial-data/

Add custom administration commands

Files in the folder management/commands define extra commands.
You can execute the custom commands from the command line, through a
web API or interactively from the execution screen.

Run from the command line
frepplectl my_command

Web API of the command
POST /execute/api/my_command/

[image: Custom command in the execution screen]
Simplified, the code for a command looks as follows. An online copy is available
on https://github.com/frePPLe/frepple-data-admin/tree/master/data_admin/docs/getting_started/my_app/management/commands/my_command.py

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py
 | |- admin.py
 | |- views.py
 | |- urls.py
 | |- menu.py
 | |- fixtures
 | | |- my_app_data.json
 | |- management
 | |- __init__.py
 | |- commands
 | |- __init__.py
 | |- my_command.py

class Command(BaseCommand):
 # Help text shown when you run "frepplectl help my_command"
 help = "This command does ..."

 # Define optional and required arguments
 def add_arguments(self, parser):
 parser.add_argument(
 "--my_arg",
 dest="my_arg",
 type=int,
 default=0,
 help="an optional argument for the command",
)

 # The busisness logic of the command goes in this method
 def handle(self, *args, **options):
 print("This command was called with argument %s" % options["my_arg"])

 # Label to display on the execution screen
 title = _("My own command")

 # Sequence of the command on the execution screen
 index = 1

 # This method generates the text to display on the execution screen
 @staticmethod
 def getHTML(request):
 context = RequestContext(request)
 template = Template(
 """
 {% load i18n %}
 <form class="form" role="form" method="post"
 action="{{request.prefix}}/execute/launch/my_command/">{% csrf_token %}
 <table>
 <tr>
 <td style="padding:15px; vertical-align:top">
 <button class="btn btn-primary" id="load" type="submit">{% trans "launch"|capfirst %}</button>
 </td>
 <td style="padding:15px">
 A description of my command
 </td>
 </tr>
 </table>
 </form>
 """
)
 return template.render(context)

You can find more detailed information on https://docs.djangoproject.com/en/2.2/howto/custom-management-commands/

Add unit tests

Unit tests are defined in the file tests.py. They are executed when you run the command:

Run the test
frepplectl test freppledb.my_app

The code for a unit test looks as follows:

data_admin_examples
 |- example1
 |- my-app
 | |- __init__.py
 | |- models.py
 | |- migrations
 | | |- __init__.py
 | | |- 0001_initial.py
 | |- serializers.py
 | |- admin.py
 | |- views.py
 | |- urls.py
 | |- menu.py
 | |- fixtures
 | | |- my_app_data.json
 | |- management
 | | |- __init__.py
 | | |- commands
 | | |- __init__.py
 | | |- my_command.py
 | |- tests.py

class SimpleTest(TestCase):
 def test_basic_addition(self):
 self.assertEqual(1 + 1, 2) # Just making sure

You can find more detailed information on https://docs.djangoproject.com/en/2.2/topics/testing/overview/

Even more information!

Data-admin is based on django web application framework. You can dig deeper
by visiting https://www.djangoproject.com, checking out the full documentation
and follow a tutorial.

Another good approach is to study the way the standard apps in frePPLe
are structured. The full source code of the Community Edition is on
https://github.com/frePPLe/frepple/tree/master/freppledb

User guide

This section has instructions to navigate through the user interface.

	Logging in and logging out

	Home screen

	Changing your password

	Navigation

	Data maintenance

	Filtering data

	Sorting data

	Favorites

	Selecting time buckets

	Exporting data

	Data source URL

	Importing data

	Customizing a report

	User preferences

	User permissions and roles

	Messages

	Inbox

	Tasks
	Data commands

	Administrator commands

	Developer commands

	Execution screen

	What-if scenarios
	Selecting a scenario

	Scenario management

	Access rights and permissions

Logging in and logging out

You can log in using your user name or your email address.

A default user is created after installation: user name admin and
password admin.

Danger

For security reasons, it is highly recommended to change the password
of this user.

Links to log out are provided in the user menu and in the upper right
corner, next to your user name.

[image: Logging in]

When the “remember me” box is checked, your user session session will be persisted
in your browser after you close the browser window. You will only have to log in again
after some time of inactivity (3 days by default, configurable by an administrator with
the setting SESSION_COOKIE_AGE).

Security sensitive deployments should set this setting equal to 0, which disables this
feature and forces users to log in for every browser session.

The “forgot your password” feature will send an email to reset your password. The
administrator will need to update the configuration with the connection details of an
SMTP mail server for this feature to work.

Home screen

The home page of is a dashboard with widgets that a planner uses in his daily planning
activities. It is an efficient starting point for the common activities.

The home screen is configurable by every user to meet his/her requirements and taste.

[image: Home screen]
The following widgets are available:

	
Inbox

An overview of notifications and messages.

	
News

This widget picks up the latest news topics from frepple.com.

	
Recent actions

Shows your most recent editing actions.

Changing your password

From the top right of the screen “My Preferences” or from the menu bar a screen can be opened where you can change your password.

Users often choose poor passwords.
We enforce a certain validation rules for passwords:

	Passwords need to be at least 8 characters.

	Passwords cannot be similar to the user name, email address, first name or last name.

	Passwords cannot be entirely numeric.

	Password cannot be part of a list of commonly used passwords.

An administrator can use the user administration screen to change passwords as well.

[image: Change password]

Navigation

Navigating the user interface is easy and intuitive.

	
Menu bar

Doesn’t need explanation…

Screens to which you have no permissions will not be shown in the menu.

	
Jump search

Enter 2 or more characters in the search box, and a list of matching
objects is shown to you.

	
Breadcrumbs

The breadcrumbs allow you to navigate with a single click to a screen
you visited before.

	
Detail links

The modelling objects have an triangular icon next to them. Clicking on
it will open a screen with a selection of detailed reports on the
object.

The screenshot below illustrates each of these methods.

[image: Navigation]

Data maintenance

FrePPLe has fully integrated data maintenance capabilities, including an audit
trail of all changes.

When you don’t have edit or add permissions this options will automatically
be hidden from the screens.

Data can be edited in different ways:

	
Edit data in the grid

Updated cells are marked in bold and the save icon will turn red. Hit the
save icon to store the changes on the server. Or hit cancel to restore
the original values.

You can use the plus and minus icon to add and remove rows.

You can also select one or more rows and duplicate them.

	
Edit the data in a form

Each entity has an edit form.

	
Import an Excel file or CSV-text file

For mass changes to the data, it’ll be easier to export the data to Excel,
apply the changes in Excel and upload the new file.

See Importing data.

[image: Edit using a table]
[image: Edit using a form]

Filtering data

In all screens a filter can be defined with the search box displayed next
to the title.

	A search on a text field can be added by entering the search term
in the input box, and then selecting the field where to search on.

	For more complex filters, you click on the search icon next to the
input box. An rich expression editor pops up.

	
Existing values are displayed next to the title. Filter values can
be edited, which allows quick re-filtering.

When the filter value is empty, that filter is inactivate.

[image: Filtering data]

Sorting data

Clicking on a column header will sort the sort the data in ascending order.
Another click will sort in descending order. A third click deactivates
the sort.

You can sort on up to 3 fields simultaneously.

The sorting of a screen is automatically stored. When you reopen the same
report later on, it will open with the same sorting as when you left it.

[image: Sorting data]

Favorites

All screens allow you to manage favorite settings with the star icon in
the tool bar on the upper left. This allows you to quickly jump back
to frequently report settings, and can be huge time saver in your daily
workflows.

A favorite remembers the following information:
- filters
- sorting fields and direction
- displayed columns, their order and width

Favorites are private for each user.

[image: Managing favorites]

Selecting time buckets

A number of reports show results in a bucketized format. The buckets can be
selected using on the clock icon in the upper right corner.

[image: Time buckets]
The popup window allows you to define the horizon you want to report for:

	
The size of the report buckets:

By default we create buckets for “days”, “weeks”, “months”, “quarter”
and “year”.

Weeks are starting on Monday.

Months are calendar months, and a week thus spans across 2 months.

	
The start and end date of the horizon can be specified in 2 ways:

	As absolute dates.

	
Relative to the current date.

The report horizon then always starts at the current date of the plan. This
value is specified in the Parameter table as “currentdate”, or is
automatically set to the system clock if the parameter is absent or
incorrectly formatted.

The end date of the reporting horizon is equal to the current date plus
the specified offset. When the offset is specified in weeks or months, the
end date is rounded up to the start date of the following week or month.
This avoids reporting on partial buckets.

The settings you select are saved and will apply to all bucketized reports you
open.

Tip

An administrator can update the buckets by manipulating the records in the
buckets and bucketdetail tables: In this way you can set up the buckets that are
relevant for your organization, and also give the buckets the labels you prefer.

Exporting data

You can export the data either a) as a native Excel workbook or b) as
a CSV-formatted text file or c) as a data source URL by clicking
on the download arrow on the upper right.

For report with time buckets, two structures are available:

	
Table:

Uses the same layout as shown on the screen. The time buckets are shown
as columns in the CSV-file.

	
List:

A separate line is generated for each time bucket. This flat format can
be more appropriate for further processing by other tools.

The export is not limited to the page currently displayed on the screen,
but all pages in the filtered selection will be exported.

A couple of notes on the CSV-format:

	The separator in the CSV-files varies with the chosen language: If in your
language a comma is used as a decimal separator for numbers, the CSV file
will use a semicolon (;) as delimiter. Otherwise a comma (,) is used.
See http://en.wikipedia.org/wiki/Decimal_mark

	The date format exported and imported by frePPLe is ‘YYYY-MM-DD HH:MM:SS’.
Microsoft Excel tends to export dates in your local format, which can cause
problems when you save the file again and try to importing it back in frePPLe.
The best approach is to import the cells as text to avoid any conversion.

	The export process will encode the data file in the encoding defined by the
setting CSV_CHARSET (default UTF-8).

Tip

Exporting to Excel format avoids these common pitfalls from the CSV
text-files.

In the Execution screen you also have the capability to export all entities
into a single Excel workbook.

[image: Exporting data]
If the user has permissions on other scenarios for the view he/she is trying to export,
another window dialog will be displayed with these scenarios.

By default only current
scenario will be selected and the user cannot disable this selection.

If the user selects extra scenarios then the generated spreadsheet or CSV file will contain
data for all selected scenarios. An extra column “scenario” is added in the file to clearly
identify to which scenario a data row belongs to.

[image: Exporting data]

Data source URL

With this option we provide a URL where external applications have on line access to the report data.

The data source URL can be pasted in any kind of reporting software supporting this format (Excel, Google sheets…).
This is pretty convenient if you are exporting the page you are visiting on a regular basis as refreshing your data in your software
will take no longer than a click.

The video below demonstrates how to pull frePPLe data in an Excel spreadsheet.

Below are the steps to configure a data source URL in Excel:

	Select the scenarios you wish to export (by default, only current scenario is selected).

	Click on the “Copy to clipboard” button so that frePPLe copies the data source URL into your clipboard.

	Open a new spreadsheet in Excel, move to the “Data” menu and select “New Query”, then “From Other Sources” and finally “From Web”.
Note that, in some old versions of Excel, this requires the installation of the Power Query module.

[image: Exporting data]

	Paste the URL in the clipboard in the field and press ok.

[image: Exporting data]

	Your credentials need to be populated in Excel so that it can connect to your frePPLe instance.
Choose the “basic” option and enter your frePPLe username and password. Note that, as long as the connection uses the https protocol
(which is always the case for the frePPLe cloud users), the crendentials are encrypted.

[image: Exporting data]

	If Excel has been able to connect to your frePPLe instance, Excel should display data from your report in a dedicated window:

[image: Exporting data]

	At this point, you have the choice to either load your data or most likely transform your data to select which columns to display,
in which order and possibly add calculated columns. Note that all the columns of the view are available before transformation and all crosses
also in case of a pivot report (reports where time bucket is a column such as inventory or capacity reports) so exporting
your data using the data source URL will differ from the columns selection you have on frePPLe. Once transformed, you can then load your data.

	The magic happens when the report you have exported using the data source URL is modified in frePPLe, you have the possibility in Excel to
refresh your data in a simple click using the “refresh” option. This will automatically create a connection to your frePPLe instance and update
the data in the spreadsheet.

[image: Exporting data]

Importing data

You can upload data files in a) native Excel format or
b) CSV format. Clicking on the import arrow in the upper
right corner allows you to select the file to upload.
Note that you can also drag and drop a file into the dialog box.
FrePPLe automatically detects which of the two data formats you’re using.

The upload icon will only be available when you have add-permission on
the data object you’re uploading. A message is shown when you don’t have
this permission.

The first line in the data file should contain the field names (not case
sensitive). To get a sample of the input format you can first create a export:
the format of the export file is such that it can be reread into frePPLe.

The dialog screen shows a checkbox First delete all existing records AND ALL RELATED TABLES
meaning that you can choose to delete the existing contents of the table before uploading
the new data. When the option is selected, dependent tables are also erased:
e.g. if you select this option when uploading the resource table, also the operationresource
table will be erased since the second table references the first one.

Caution

If you’re not very familiar with the relation between the objects in frePPLe’s
data model, you probably shouldn’t use the First delete all existing records AND ALL RELATED TABLES option.

After the upload, the number of data rows loaded will be displayed.
When data errors were found during the loading process the details will be shown
as well.

A couple of notes on the CSV-format:

	The separator in your CSV-files varies with the chosen language: If in your
language a comma is used as a decimal separator for numbers, the CSV file
will use a semicolon (;) as delimiter. Otherwise a comma (,) is used.
See http://en.wikipedia.org/wiki/Decimal_mark

	The date format expected by frePPLe is ‘YYYY-MM-DD HH:MM:SS’.

	The data file is expected to be encoded in the character encoding defined by
the setting CSV_CHARSET (default UTF-8).

Tip

Importing a native Excel file avoids these common pitfalls from the CSV
text-files.

In the Admin/Execute menu you also have the capability to import multiple tables
from a single Excel workbook using the Import a spreadsheet option.

[image: Importing data]

Customizing a report

Each user can update the configuration of the reports to suite his needs and taste.

Click the customize icon in the tool bar to bring up a popup window where the user
can update:

	
Fields to be shown:

Click on a field to toggle its visibility.

Note that the key field of a table cannot be hidden.

	
Order of the fields:

Drag and drop a visible field to the desired position.

	
Number of frozen columns:

Select the number of columns that stay in place when you scroll to the right.

	
Column width:

Changing the column width is not done from the popup window, but directly
in the report itself.

Hover the mouse over the boundary between 2 columns, holds the mouse down and
drag to the correct width.

	
Filters, sorting and paging:

Filtering criteria, sorting
and page number are preserved. When you re-open the report later on it will
opens exactly as when you left it.

The settings are stored on the server when you hit the OK button.

[image: Customizing a report]

User preferences

For each user frePPle stores a number of personal settings and preferences.

	
Language:

Specifies the language of the user interface.

By default frePPLe will detect the preferred language of your web browser
and use that.

You can override this and force a particular language.

	
Page size:

Number of records to fetch in a single page from the server.

The default value is 100. Values lower than 25 are not accepted.

Selecting a high value can slow down the display of the reports.

	
Theme:

Theme for the user interface.

If your system administrator has configured the system to support only
a single theme (by editing the THEMES setting in the djangosettings.py
file), this option will not be available to the users.

	
Avatar:

A small picture of yourself.

The uploaded picture must 1) be square (ie same height and width),
2) be in jpeg, png or gif format and 3) be smaller than 100kB.

	
Password:

To change the password enter the current one and twice the new value.

[image: User preferences]

User permissions and roles

An administrator can create login accounts, set their password and permissions.

Groups are a generic way of categorizing users and apply permissions to those users.
A user in a group inherits all the permissions granted to that group.
A user can belong to any number of groups.

The user name, email, first name, last name, password are properties that are defined
system-wide.

The active flag, superuser flag, assigned groups and user permissions can
be defined per scenario. When the user is marked active in a scenario, the scenario
will appear in the dropdown list on the top right of the screen.

[image: User]
[image: User group]

Messages

Each object has a message tab where you can:

	Click to “follow” button to get notifications in your inbox
when there is activity on the object.

	Read and add comments.

	Upload attachments.

	See the change history of the object.

[image: Messages]

Inbox

The inbox shows messages about recent activity on objects you are following.
It allows you to efficiently collaborate with your colleagues on the plan.

First, you need to follow objects. Whenever there is some
activity on that object you will get a message in your inbox.

[image: Inbox]

Tasks

FrePPLe provides a list of commands that perform actions on the
database, the input data and/or the output data.

The commands can be accessed in three different ways:

	From the execution screen: Execution screen

	From the command line: Command line

	Through a web-based API: Remote commands

This section provides an overview of the available actions:

	Data commands

	Group and schedule tasks

	Export a spreadsheet

	Import a spreadsheet

	Export plan result to folder

	Email exported reports

	Import data files from folder

	Scenario management

	Back up database

	Empty the database

	Administrator commands

	Load a dataset in the database

	Generate time buckets

	Create the PostgreSQL database(s)

	Create or migrate the database schema

	Restore a database backup

	Create a new superuser

	Change a user’s password

	Remove all database objects

	Developer commands

	Python command prompt

	Database shell prompt

	Run the development web server

	Run the test suite

The list can be extended with custom commands from extension modules.

Data commands

Group and schedule tasks

With this option a user can execute a sequence of steps together as a group.

The execution of the task group can be triggered manually. Or it can be scheduled automatically
based on a predefined schedule.

Optionally, a email can be sent out upon failure or success of the execution.

For this task to be available some configuration may be required. On Windows this task
is a front-end for the Windows Task Scheduler, and you need to assure the user running
the web server has access to use it. On Linux this task is a front-end for the at-command,
and you need to edit the /etc/at.allow or /etc/at.deny file to grant access for the user
running the apache web server.

	Execution screen:

[image: Execution screen - Group and schedule tasks]

	Command line:

frepplectl scheduletasks --schedule=my_task_sequence

	Web API:

POST /execute/api/scheduletasks/?schedule=my_task_sequence

Export a spreadsheet

This task allows you to download the complete model as a single spreadsheet
file. The spreadsheet can be opened with Excel or Open Office.

A separate sheet in the workbook is used for each selected entity.

The exported file can be imported back with the task described just below.

Optionally, you can make your dataset anonymous during the export to hide
sensitive company data. All entities then get a new name during the export. It remains
ABSOLUTELY NECESSARY to carefully review the generated spreadsheet and to remove
any sensitive data that is still left, such as descriptions, categories, custom
attributes, cost information.

This command is available only in the user interface:

	Execution screen:

[image: Execution screen - Spreadsheet export]

Import a spreadsheet

This task allows you to import an Excel spreadsheet.

A separate sheet in the workbook is used for each selected entity.

The sheet must have the right names - in English or your language. The first row
in each sheet must contain the column names.

This command is available only in the user interface:

	Execution screen:

[image: Execution screen - Spreadsheet import]

Export plan result to folder

This task allows exporting data to a set of files in CSV or Excel format.
The purpose of this task is to help the exchange of information with other systems.

The command can easily by customized to export the results you need.

The files are all placed in a folder UPLOADFILEFOLDER/export/, which can be configured
per scenario with the UPLOADFILEFOLDER value in the djangosettings.py file.

The exported files can be accessed from the user interface, or through over a
HTTP(S) web interface.

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - Export plan data to folder]

	Command line:

frepplectl exporttofolder

	Web API:

Export the planning result files:
POST /execute/api/exporttofolder/

Retrieve one of the exported files:
GET /execute/downloadfromfolder/1/<filename>/

Email exported reports

Reports that have been exported using Export plan result to folder command can be
emailed to one or more recipients.

Recipients have to be separated by a comma in the Emails field.

Selected reports are zipped into a reports.zip file that is attached to the email.

In order to have this command working, the EMAIL parameters in the djangosettings.py
file must be properly configured.

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - Email exported reports]

	Command line:

frepplectl emailreport [--sender] --recipient --report

	Web API:

Email exported reports:
POST /execute/api/emailreport/?recipient=recipient1,recipient2...&report=report1,report2,report3...

Import data files from folder

This task allows importing data from a set of CSV-formatted files (eventually GZ-compressed).
The purpose of this task is to help the exchange of information with other systems.

The files are all placed in a folder that is configurable per scenario with the
UPLOADFILEFOLDER in the djangosettings.py configuration file. The log file records
all data imports, in addition to any data errors identified during their processing.

The data files to be imported must meet the following criteria:

	
The name must match the data object they store: eg demand.csv, item.csv, item.xlsx, item.csv.gz

This is important for frePPLe to understand the correct processing order of the files.

	
Multiple files for the same entity can be provided. They will be processed in alphabetical order:
eg “demand (1).xlsx”, “demand (2).csv”, “demand.1.csv”, “demand.2.csv”, “demand.extra.xlsx”, “demand.postprocessing.sql”

	
The first line of the file should contain the field names. The field name can be in English
or the default language configured with the LANGUAGE_CODE setting.

The following file formats are accepted:

	
Excel:

The file name must end with .xlsx

	
CSV:

The file name must end with .csv (or .csv.gz when compressed with gzip).

Some specific notes on the CSV format:

	The separator in your CSV-files varies with the chosen language: If in your
language a comma is used as a decimal separator for numbers, the CSV file
will use a semicolon (;) as delimiter. Otherwise a comma (,) is used.
See http://en.wikipedia.org/wiki/Decimal_mark

	The date format expected by frePPLe is ‘YYYY-MM-DD HH:MM:SS’.

	The data file is expected to be encoded in the character encoding defined by
the setting CSV_CHARSET (default UTF-8).

	
PostgreSQL copy files:

The file name must end with .cpy (or .cpy.gz when compressed with gzip).

Uploading in this format goes MUCH quicker than the other formats. It has some
limitations however: a) the validation of the input data is not as extensive
as the other formats, b) a single faulty record will abort the upload and c)
it only supports adding new records and not updating existing records.

This method is therefore only recommended for loading very large data files
with clean data.

	
SQL:

The file name must end with .sql (or .sql.gz when compressed with gzip).

For security reasons a database role with a minimal set of permissions must be
define. The setting DATABASES / SQL_ROLE needs to refer to this role.

In this option you can see a list of files present in the specified folder, and download
each file by clicking on the arrow down button, or delete a file by clicking on the
red button.
The arrow up button will give the user the possibility of selecting multiple files
to upload to that folder.

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - Import data files from folder]

	Command line:

frepplectl importfromfolder

	Web API:

Upload a data file:
POST /execute/uploadtofolder/0/ with data files in multipart/form-data format

Import the data files:
POST /execute/api/importfromfolder/

Scenario management

This option allows a user to either create copies of a dataset into a
what-if scenario or promote the data from a scenario into Production database.

When the data is successfully copied, the status changes from ‘Free’
to ‘In use’. The access to the newly copied scenario is limited to 1) the
user who performed the copy plus 2) all superusers of the source scenario.

When the user doesn’t need the what-if scenario any more, it can be released
again.

Releasing a scenario can be done from any scenario while copying and promoting
actions can only be performed from current scenario to destination scenario.

The label of a scenario, which is displayed in the dropdown list in the
upper right hand corner, can also be updated here.

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - what-if scenarios]

	Command line:

To copy scenario scenario1 into scenario scenario2:
frepplectl scenario_copy [--force --promote] scenario1 scenario2

To release scenario scenario1:
frepplectl scenario_release --database=scenario1

	Web API:

To copy a scenario (including Production) into another scenario:
* POST /execute/api/scenario_copy/?copy=1&source=scenario1&destination=scenario2&force=1

To release a scenario named scenario1:
* POST /scenario1/execute/api/scenario_copy/?release=1

To promote a scenario named scenario1 into Production (where "default" is the Production name):
* POST /execute/api/scenario_copy/?promote=1&source=scenario1&destination=default

Back up database

This task dumps the contents of the current database schema to a backup file.
The file is created in the log folder configured in the configuration files
djangosettings.py. It can be downloaded from the browser.

For security reasons the command is only available to users listed in the
setting SUPPORT_ACCOUNTS. By default this is an empty list.

The command also removes dumps older than a month to limit the disk space usage.
If you want to keep dumps for a longer period of time, you’ll need to copy the backup files
to a different location.

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - backup]

	Command line:

frepplectl backup

	Web API:

Create a backup:
POST /execute/api/backup/

Download the backup file:
GET /execute/logdownload/<task identifier>/

Empty the database

This will delete all data from the current scenario (except for some internal
tables for users, permissions, task log, etc…).

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - erase]

	Command line:

frepplectl empty --models=input.demand,input.operationplan

	Web API:

POST /execute/api/empty/?models=input.demand,input.operationplan

Administrator commands

Load a dataset in the database

A number of demo datasets are packaged with frePPLe. Using this action you can
load one of those in the database.

The dataset is loaded incrementally in the database, without erasing any
previous data. In most cases you’ll want to erase the data before loading any
of these datasets.

You can use the dumpdata command to export a model to the appropriate format
and create your own predefined datasets.

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - load a dataset]

	Command line:

frepplectl loaddata manufacturing_demo

	Web API:

POST /execute/api/loaddata/?fixture=manufacturing_demo

Generate time buckets

Many output reports are displaying the plan results aggregated into time
buckets. These time buckets are defined with the tables dates and bucket dates.

This tasks allows you to populate these tables in an easy way with buckets
with daily, weekly, monthly, quarterly and yearly granularity. Existing bucket
definitions for these granularities will be overwritten.

The following arguments are used:

	
Start date, end date:

Definition of the horizon to generate buckets for.

	Week start: Defines the first date of a week.

	
Day name, week name, month name, quarter name, year name:

Template used to generate a name for the buckets.

Any character can be used in the names and the following format codes can be used:

	%a: Weekday as locale’s abbreviated name. Eg: Sun, Mon, …

	%A: Weekday as locale’s full name. Eg: Sunday, Monday, …

	%w: Weekday as a decimal number, where 0 is Sunday and 6 is Saturday.

	%d: Day of the month as a zero-padded decimal number. Eg: 01, 02, …, 31

	%b: Month as locale’s abbreviated name. Eg: Jan, Feb, …

	%B: Month as locale’s full name. Eg: January, February, …

	%m: Month as a zero-padded decimal number. Eg: 01, 02, …, 12

	%q: Quarter as a decimal number. Eg: 1, 2, 3, 4

	%y: Year without century as a zero-padded decimal number. Eg: 00, 01, …, 99

	%Y: Year with century as a decimal number. Eg: 2018, 2019, …

	%j: Day of the year as a zero-padded decimal number. Eg: 001, 002, …, 366

	%U: Week number of the year as a zero padded decimal number. Eg: 00, 01, …

	%W: Week number of the year as a decimal number. Eg: 0, 1, …

	%%: A literal ‘%’ character.

This command is available in the user interface, the command line and the web API:

	Execution screen:

[image: Execution screen - generate time buckets]

	Command line:

frepplectl createbuckets --start=2012-01-01 --end=2020-01-01 --weekstart=1

	Web API:

POST /execute/api/createbuckets/?start=2012-01-01&end=2020-01-01&weekstart=1

Create the PostgreSQL database(s)

This command will create the PostgreSQl databases for frePPLe.

If the database already exists you will be prompted to confirm whether you
really to loose all data in the existing database. When confirmed that database
will dropped and recreated.

This command is available on the command line only:

Create all scenario databases
frepplectl createdatabase

Recreate only a single database
frepplectl createdatabase --database=scenario3

Create or migrate the database schema

Update the database structure to the latest release

This command is available on the command line only:

Migrate the main database
frepplectl migrate

Migrate a scenario database
frepplectl migrate --database=scenario1

Restore a database backup

This command is available on the command line only:

frepplectl restore database_dump_file

Create a new superuser

This command creates a new user with full access rights.

This action is possible in the user interface and the command line:

	User interface:

See User permissions and roles

	Command line:

frepplectl createsuperuser new_user_name

Change a user’s password

This command changes the password of a certain user.

This action is possible in the user interface and the command line:

	User interface:

See Changing your password and User permissions and roles.

	Command line:

frepplectl changepassword user_name

Remove all database objects

This command completely empties all tables in the database, including all log, users,
user preferences, permissions, etc…

A complete reset of the database is not very common. In most situations the command
described above to empty the database is sufficient. It empties the data tables,
but leaves the important configuration information intact.

This command is available on the command line only:

frepplectl flush

Developer commands

Database shell prompt

This command runs an interactive SQL session on the PostgreSQL database.

frepplectl dbshell --database=default

Python command prompt

This command runs an interactive Python interpreter session.

frepplectl shell

Run the test suite

Run the test suite for the user interface.

frepplectl test freppledb

Run the development web server

Run a development web server, which automatically reloads when code is changed.

For production use this web server doesn’t scale enough.

frepplectl runserver

Execution screen

This screen allows you to perform a number of administrative actions.

	Export a spreadsheet

	Import a spreadsheet

	Export plan result to folder

	Import data files from folder

	Scenario management

	Back up database

	Empty the database

	Load a dataset in the database

	Generate time buckets

[image: Execution screen]
The status section at the top of the screen is refreshed every 5 seconds.
You can disable the refreshing by clicking on the autorefresh icon.

Tasks launched in this screen are all executed asynchronously: when you hit
the launch button the task is added to a job queue. A separate worker process
will execute the tasks from the queue.

All the actions (and more) can also be performed synchronously
from the command line with the frepplectl script: see
Command line

It is also possible to launch tasks through a web interface: see
Remote commands

What-if scenarios

FrePPLe allows users to easily create alternative plans. A scenario
is complete sandbox copy of all data, such that any modification done
in it doesn’t impact the production plan.

[image: What-if scenarios]

	Selecting a scenario

	Scenario management

	Access rights and permissions

Selecting a scenario

When scenarios are in use, a drop down list appears in the upper right
corner. It allows you to select the scenario to work in.

Only scenarios to which you have access rights will be shown in the list.

[image: Scenario selection]

Scenario management

During the installation a number of what-if slots (3 by default) are configured
by the administrator. See this page for the
details.

The scenario’s can have the following states:

	Free:
The slot is currently unallocated and available for use.

	In Use:
Data has been copied into the scenario slot. Users can freely work
independently in the scenario, without affecting the main model.

In the execution screen, you can change the status of a
scenario slot:

	
Copy is used to duplicate an existing schema into a free slot.

After copying the scenario slot moves from free to in use.

	
Release is used to flag that work on the what-if scenario
slot has finished.

After releasing the scenario slot moves from in use to free again.

The label shown in the scenario selection dropdown can also be updated
in this screen.

[image: ../_images/execution-scenarios.png]

Access rights and permissions

Access rights and permissions can be managed for each scenario individually.

When copying of a new scenario, it will initially be accessible by 1) the user
creating the copy and 2) all superusers in the source scenario.

A user must be marked active in a scenario before it will appear in the list of
available scenarios.

The superuser status of a user can be different in each scenario. Users can have
completely different role and permissions in each scenario.

The list of users and their passwords is always identical in all scenarios.

[image: ../_images/user-list.png]
See User permissions and roles for more details on the configuration
of access rights.

Integration guide

This chapter describe frePPLe’s capabilities to integrate with
external systems.

The first sections describe the different ways to integrate your data
sources with frePPLe.

The batch command section contains information on how you can automate and
schedule tasks in frePPLe.

A final section contains information for people that require a low level
interaction with the frePPLe planning engine.

	Excel files

	CSV text files

	Database access

	REST API

	Command line

	Remote commands

Excel files

For small models and prototype models the most convenenient way
of integrating the data will be to work with excel workbooks.

	
Individual data tables can be exported and imported directly
from the user interface.

See Importing data
and Exporting data.

	
Multiple data tables can be exported and imported in single workbook.
The workbook contains a separate sheet for each table.

See Execution screen.

CSV text files

FrePPLe can import CSV-formatted files from a configurable data directory.
And frePPLe can export its planning results in a set of CSV-formatted files as well.

The files are all placed in a folder that is configurable with the UPLOADFILEFOLDER
in the djangosettings.py configuration file. The log files importfromfolder.log
and exporttofolder.log record all data imports and file exports, together with
any data errors identified during their processing.

The data files to be imported must meet the following criteria:

	
The file name must start with the name of the data object they store.

The file name must end with the extension .csv or or .csv.gz. Files
with the extension .csv.gz are expected to compressed in gzip format.

Some examples of valid file names are item.csv.gz, item.csv, demand.csv,
demand.part1.csv

	The first line of the file should contain the field names

	The file should be in CSV format. The delimiter depends on the default
language (configured with LANGUAGE_CODE in djangosettings.py).
For english-speaking countries it’s a comma. For European countries
it’s a semicolon.

	The file should be encoded in UTF-8 (configurable with the CSV_CHARSET
setting in djangosettings.py)

The export can be customized, i.e. export only the relevant data and with the
a specific format (file names, dates, separators, …). The customization is
done by copying the exporttofolder.py file and updating the SQL
statements it contains.

The export and import can be run in 2 ways:

	In the user interface a user can interactively launch the task in
the execution screen.

	You can run the task from the command line using the
frepplectl utility.

frepplectl exporttofolder

frepplectl importfromfolder

Database access

For large data volumes a data integration with an ETL tool [https://en.wikipedia.org/wiki/Extract,_transform,_load]
to directly connect to the PostgreSQL database will be the most
efficient.

The frePPLe database schema is very transparent and straightforward
to allow this type of integration.

Keep in mind however:

	Your ETL-interface will need to capture and handle all types of
invalid data. With all other integration methods the frePPLe API
layer catches and reports such errors, but not in this integration
mode.

	The database schema can change between releases. We provide no guarantuee
that your ETL-interface will be future-proof.

REST API

FrePPLe provides a state of the art REST API (see https://en.wikipedia.org/wiki/Representational_state_transfer)
for data exchange with other applications.

Features:

	Fast and efficient.

	Supports multiple formats.

	Open and extendible architecture, leveraging the excellent django REST framework
from Tom Christie: see http://www.django-rest-framework.org/

When you access Help in the navigation Menu, you will find a API Help entry. This page
allows you to test and experiment with the API from your browser. It shows all URLs and
HTTP methods supported by the API.

	List API from your browser

	Detail API from your browser

	API from the command line

[image: REST API index]

List API from your browser

The top part of this screen show the headers and content of the HTTP response of the web service.

The different sections below allow you to create new request for the GET, OPTIONS, POST, PUT,
PATCH and DELETE HTTP methods.
In the next image you can see a list of all demand objects and all the fields of each object.

[image: REST list API]
It is also possible to filter GET and DELETE requests by introducing extra parameters in the URL.
The first extra parameter in the URL will start with a ? and the following ones start with &
Adding ?quantity__gte=200&location=factory 2 will output all demands with a quantity greater
or equal to 200 from location factory 2.

[image: REST list API]

For number, duration, and date fields the filters are: __gt, __gte, __lt, __lte,
__exact, __in.

For strings filters are: __exact, __contains, __in. (including the local primary key field)

For foreign key strings: __exact, __in.

In the DEMAND table the name field is the local primary key, and location field is a foreign key.
In this case you may use name__contains=06 to get all the demands with 06 on the name, but you
cannot do a location__contains (as this field is a foreign key) but you may use
location__in=factory 1,factory 2 to list all demands from a list of specific locations.

Some models will allow bulk operations. For these models, requests in JSON format have been tested
for bulk POST using a LIST as argument, ie. [``*1 or more objects*]``. The PUT request requires all fields in the JSON list of objects,
and the PATCH request requires the primary key field in each of the objects.

One other option that may be useful for frepple integration and connector troubleshooting to the format
of the response. Adding the format=json option will dump a JSON to the browser window.

Detail API from your browser

The top part of this screen show the headers and content of the HTTP response of the web service.

The different sections below allow you to create new request for the GET, OPTIONS, PUT,
PATCH and DELETE HTTP methods on the selected object.

[image: REST detail API]

API from the command line

Using tools like “curl”, “wget” or similar you can use the command line to (depending on your permissions) change/read/add/delete data.

To just get a list of all sales orders in JSON format:

wget --http-user=admin --http-password=admin http://127.0.0.1:8000/api/input/demand/?format=json

curl -H 'Accept: application/json; indent=4' -u admin:admin http://127.0.0.1:8000/api/input/demand/?format=json

To just get a filtered list of sales orders with quantity equal or above 200, and with location factory 2
(the URL needs escaping, the spaces and & were replaced by %20 and \&) in JSON format:

wget --http-user=admin --http-password=admin http://127.0.0.1:8000/api/input/demand/?quantity__gte=200\&location=factory%202\&format=json

curl -H 'Accept: application/json; indent=4' -u admin:admin "http://127.0.0.1:8000/api/input/demand/?quantity__gte=200&location=factory%202&format=json"

To just get a list of all sales orders in API format (assuming the user is named “admin” and that the password is also “admin”:

wget --http-user=admin --http-password=admin http://127.0.0.1:8000/api/input/demand/?format=api

curl -H 'Accept: application/json; indent=4; charset=UTF-8' -u admin:admin http://127.0.0.1:8000/api/input/demand/?format=api

To POST a single or multiple records in JSON format it is also straightforward.
For a single record POST request:

curl -X POST -H "Content-Type: application/json; charset=UTF-8" -d "[{\"keyA0\":\"valA0\", \"keyA1\":\"valA1\"}]" -u admin:admin http://127.0.0.1:8000/api/input/demand/?format=json

For a multiple record POST request:

curl -X POST -H "Content-Type: application/json; charset=UTF-8" -d "[{\"keyA0\":\"valA0\", \"keyA1\":\"valA1\"},{\"keyB0\":\"valB0\", \"keyB1\":\"valB1\"}]" -u admin:admin http://127.0.0.1:8000/api/input/demand/?format=json

“key:val” pairs should be separated by a comma, so it is probably easier if you store the data in a file:

curl -X POST -H "Content-Type: application/json; charset=UTF-8" --data @json_records_file.txt -u admin:admin http://127.0.0.1:8000/api/input/demand/?format=json

To PUT/PATCH a single record in JSON format:

curl -X PATCH -H "Content-Type: application/json; charset=UTF-8" -d "{\"key\":\"val\"}" -u admin:admin http://127.0.0.1:8000/api/input/demand/a_demand_id/

curl -X PUT -H "Content-Type: application/json; charset=UTF-8" --data @json_records_file.txt -u admin:admin http://127.0.0.1:8000/api/input/demand/a_demand_id/

PUT requires all fields so “key:val” pairs should be separated by a comma, so it is probably easier if you upload the data from a file like in the POST example.

To PUT/PATCH multiple DEMAND records in JSON format:

curl -X PATCH -H "Content-Type: application/json; charset=UTF-8" -d "[{\"name\":\"a_demand_id1\",\"key\":\"val\"},{\"name\":\"a_demand_id2\",\"key\":\"val\"}]" -u admin:admin http://127.0.0.1:8000/api/input/demand/

curl -X PUT -H "Content-Type: application/json; charset=UTF-8" --data @json_records_file.txt -u admin:admin http://127.0.0.1:8000/api/input/demand/

DEMAND primary key field is name, so for a PATCH request this field must be present in each object.
PUT requires all fields in a so “key:val” pairs should be separated by a comma, so it is probably easier if you upload the data from a file like in the POST example.

To DELETE records a safeguard is in place that prevents deleting all records in a table.
So the DELETE request requires that the number of records to be deleted is lower than the number of all records in the table.
A DELETE request for one or more records can be done with:

curl -X DELETE -H "Content-Type: application/json; charset=UTF-8" -u admin:admin http://127.0.0.1:8000/api/input/demand/?source=ERP

Command line

Tasks from the execution screen can also be launched from
the command line with the frepplectl utility.

Usage:

frepplectl subcommand [options] [args]

Type ‘frepplectl.py help <subcommand>’ for help on a specific subcommand.

The options will vary from command to command.
There are a number of common options:

	
–database=DATABASE:

Specifies which scenario database to run the command for. When left unspecified
the command will run on the production database.

The database names are defined in the djangosettings.py. Note that they can be
different from the name of the database name configured in postgresql.

	
-v VERBOSITY, –verbosity=VERBOSITY:

Verbosity level: 0=minimal output, 1=normal output, 2=all output.

	
-h, –help:

Show a help message either showing all commands or help on a specific command.

A number of these commands are inherited from the excellent Django web application
framework used by frePPLe. More details on the commands can be found on
https://docs.djangoproject.com/en/2.2/ref/django-admin/

Remote commands

Tasks from the execution screen can also be launched and
monitored remotely through a web service API.

	Reference

	Authentication

	Example

Reference

The API endpoints can be accessed with any modern web tool or programming
language using the following URLs. The examples are using the excellent
curl command line tool [https://curl.haxx.se/].

	Run a task on the default database:

curl -u <user>:<password> http(s)://<server>:<port>/execute/api/<command>/
 --data "<argument1>=<value1>&<argument2>=<value2>"

	Run a task on a scenario database:

curl -u <user>:<password> http(s)://<server>:<port>/<scenario>/execute/api/<command>/
 --data "<argument1>=<value1>&<argument2>=<value2>"

	Get the status of all running and pending tasks:

curl -u <user>:<password> http(s)://<server>:<port>/execute/api/status/

	Get the status of a single task:

curl -u <user>:<password> http(s)://<server>:<port>/execute/api/status/?id=X

	Cancel a waiting or running task:

curl -u <user>:<password> http(s)://<server>:<port>/execute/api/cancel/?id=X

All these APIs return a JSON object and they are asynchronous, i.e. they
don’t wait for the actual command to finish. In case you need to wait
for a task to finish, you will need to use a loop which periodically
polls the /execute/api/status URL to monitor the status.

Authentication

FrePPLe supports 2 methods for authentication of your user in this API:

	
Basic authentication

See https://en.wikipedia.org/wiki/Basic_access_authentication for more
details.

With curl you use the argument -u USER:PASSWORD on the command line.

	
JSON Web Token

See https://jwt.io/ for more details.

With curl you use the argument --header 'Authorization: Bearer TOKEN'
on the command line.

We strongly recommend the use of a HTTPS configuration of the frePPLe
server when using this API. Without it your data and login credentials
are sent unencrypted over the internet.

Example

To illustrate the above concepts, this section shows a common workflow to upload
new data in the frePPLe database and generate a new plan.

	Delete previous data files.

	Upload data files (in csv or excel format).

	Import the data files into frePPLe.

	Regenerate the plan with the new data.

This example uses linux bash and curl, but it can easily be coded in
any other modern programming language.

#!/bin/bash

 server="localhost:8000"

 #declare -a filelist=("buffer.csv" "item.csv")
 id=0
 output=""
 result=""

 #check the status of a task
 function checkstatus () {
 id=$1
 if (($id>0));
 then
 output=$(curl -u admin:admin http://$server/execute/api/status/?id=$id);
 else
 output=$(curl -u admin:admin http://$server/execute/api/status/);
 fi
 if [[$output =~ .*Failed || $output =~ .*Done]];
 then
 output="break";
 else
 output="wait";
 fi
 echo $output
 }

 # you may delete all files or just the ones in the arguments
 # you will have to comment the delete all files locationstable
 # and uncomment the lines above
 function deletefiles () {

 #if you want to delete just the files that you will replace
 # for FILE1 in "${filelist[@]}"; do
 # FILE2=$(basename "$FILE1")
 # #spaces should be escaped in the URL
 # FILE2=${FILE2// /\%20}
 # result=$(curl -X DELETE -u admin:admin http://$server/execute/deletefromfolder/0/"$FILE2"/);
 # done

 #to delete all files in the folder
 result=$(curl -X DELETE -u admin:admin http://$server/execute/deletefromfolder/0/AllFiles/);
 }

 function waitTillComplete () {
 id=$1
 until [[$WAIT -eq 0]]; do
 if [["$(checkstatus $id)" =~ "break"]]; then
 #show the result
 echo $(curl -u admin:admin http://$server/execute/api/status/?id=$id);
 break
 fi

 sleep "$WAIT_TIME"
 ((WAIT--))
 done
 }

 # create the file list
 # if the argument is a directory it will add all the files there
 # If the arguments are files only these will be added
 for FILE0 in "$@"; do
 if [[-d "${FILE0}"]]; then
 cd "${FILE0}"
 filelist=(*.csv *.csv.gz *.xlsx)
 else
 filelist=($filelist "$FILE0")
 fi
 done

 #delete files before
 echo -e "\n---------------start delete files----------------"
 deletefiles
 echo "---------------end delete files------------------"

 #upload the files in the list
 echo -e "\n---------------start upload files----------------"
 for FILE1 in "${filelist[@]}"; do
 #get filename without path
 FILE2=$(basename "$FILE1")
 if [[! "$FILE2" =~ *.*]]; then
 curl -X POST -F "$FILE2=@$FILE1" -u admin:admin http://$server/execute/uploadtofolder/0/
 fi
 done
 echo -e "\n---------------end upload files------------------"

 #import the data in the files
 echo -e "\n---------------start import the data----------------"
 WAIT_TIME=10 #seconds
 WAIT=6 #times
 result=$(curl -X POST -u admin:admin http://$server/execute/api/importfromfolder/)
 id=$(echo "${result//[!0-9]/}")
 waitTillComplete $id
 echo "---------------end import the data------------------"

 #run the plan
 echo -e "\n---------------start planning----------------"
 WAIT_TIME=10 #seconds
 WAIT=6 #times
 result=$(curl -u admin:admin --data "constraint=15&plantype=1&env=fcst,invplan,balancing,supply" http://$server/execute/api/runplan/)
 id=$(echo "${result//[!0-9]/}")
 waitTillComplete $id
 echo "---------------end planning------------------"

Developer guide

This chapter discusses some topics of interest to developers working on
extending, customizing or maintaining frePPLe.

	Creating an custom theme

	Adding or customizing a report
	General case

	Using the frePPLe generic report

	Translating the user interface
	For translators

	For developers

	Configuring multiple models in the user interface

	Upgrade an existing installation
	Generic instructions

	Debian upgrade script

Creating an custom theme

The user interface is styled using bootstrap v3. All variables documented at
https://getbootstrap.com/docs/3.4/customize/ are available to you to design your
look and feel.

Proceed with the following steps to compile a custom theme:

	
Install node.js:

Download and install the node.js javascript runtime environment from
https://nodejs.org/en/.

The installation also makes the npm command available which we’ll use
in the following steps.

	
Install grunt command line tools:

Grunt is a javascript task running utility.

Install it with the command:

npm install grunt-cli -g

	
Install the javascript dependencies:

Compiling the frePPLe and bootstrap styles requires a number of
javascript libraries. Install these with the following command:

npm install

	
Design the LESS files:

The styles are defined in the following files. Check out http://lesscss.org/
to learn more about the Less syntax used in these files.

	
freppledb/common/static/css/frepple.less:

Defines the frePPLe specific CSS styles.

	
freppledb/common/static/css/THEME/variables.less:

Defines the configuration of bootstrap for each of the themes.
The value of the variables is what a theme unique.

	
freppledb/common/static/css/THEME/frepple.less:

Optionally, you can create files with theme-specific styles that can’t
be expressed as variable values.

	
Compile the LESS files:

The less files need to be compiled into a CSS stylesheet for each theme.
Edit the gruntfile.js file to include your theme in the list of themes, and
then run the following command:

grunt less

In each of the theme folders the file bootstrap.min.css and bootstrap.min.css.map
will be generated.

	
Update djangosettings.py file:

New themes are only shown in the user interface when the theme is configured
in the setting THEMES.

You can also edit the setting DEFAULT_THEME to make your theme the default
one.

Adding or customizing a report

This section describes the different steps to add a new report (or update an
existing one) in the user interface. We’ll describe both the general case
as well as the generic view provided by frePPLe.

The steps outline here are a short and very brief summary of how screens
are developed in the Django web application framework. Check out
https://www.djangoproject.com for more information and an excellent tutorial.

For clarity and ease of maintenance it is recommended to always add your
reports in a custom extension app.

General case

As an example we’ll create a report to display some statistics on the size
of your model. It will simply display the total number of buffers and operations
in your model.

	
Create a view to generate the data.

A view function retrieves the report data from the database (or computes
it from another source) and passes a data dictionary with the data to
the report template.

A view is a Python function. Here’s the view required for our example,
which you can put in a file statistics.py:

from freppledb.input.models import *
from django.shortcuts import render_to_response
from django.template import RequestContext
from django.contrib.admin.views.decorators import staff_member_required

@staff_member_required
def MyStatisticsReport(request):
 countOperations = Operation.objects.using(request.database).count()
 countBuffers = Buffer.objects.using(request.database).count()
 return render_to_response('statistics.html',
 RequestContext(request, {
 'numOperations': countOperations,
 'numBuffers': countBuffers,
 'title': 'Model statistics',
 }))

The function decorator staff_member_required is used to assure users
are authenticated properly.

Notice how the first 2 statements in the function use the Django
relational mapping to pick the data from the database. This code
is translated by the framework in SQL queries on the database.

The last line in the function passes the data in a dictionary to the
Django template engine. The template engine will generate the HTML
code returned to the user’s browser.

	
Create a template to visualize the data.

The template file statistics.html will define all aspects of the
visualizing the results.

The file templates/statistics.html for our example looks like this:

{% extends "admin/base_site_nav.html" %}
{% load i18n %}
{% block content %}
<div id="content-main">
{% trans 'Number of operations:' %} {{numOperations}}

{% trans 'Number of buffers:' %} {{numBuffers}}

</div>
{% endblock %}

Templates are inheriting from each other. In this example we inherit
from the base template which already contains the navigation toolbar
and the breadcrumbs trail. We only override the block which contains
the div-element with the main content.

Templates use special tags to pick up data elements or to call special
functions. The {{ }} tag is used to refer to the data elements provided
by the view function. The {% trans %} tag is used to mark text that
should be translated into the different languages for the user interface.

	
Map the view as a URL.

To expose the view as a URL to the users you’ll need to map it to a
URL pattern.

Edit the definition of the urlpatterns variable in the file urls.py to
set up a URL for this example:

urlpatterns = patterns('',
 ...
 (r'^statistics.html$', 'statistics.MyStatisticsReport'),
)

	
Update the menu structure.

You’ll want to add the report also to a menu.

The following lines in this file menu.py will do this:

from django.utils.translation import ugettext as _
from freppledb.menu import menu
menu.addItem("admin", "statistics", url="/statistics.html",
 label=_('Model statistics'), index=900)

Using the frePPLe generic report

FrePPLe uses a standard view for displaying data in a list or grid layout,
respectively called ListReport and TableReport. With these views you can add
new reports with with less code and more functionality (such as sorting,
filtering, pagination, export and import).

The steps for adding the view are slightly different from the generic case.

	
Define a report class

Instead of defining a view function we define a class with the report
metadata. See the definition of the report base classes in the file
common/report.py to see all available options for the metadata classes.

For a list report this class has the following structure:

from freppledb.common.report import *

 class myReportClass(ListReport):
 template = 'myreporttemplate.html'
 title = 'title of my report'
 basequeryset = ... # A query returning the data to display
 frozenColumns = 1
 rows = (
 ('field1', {
 'filter': FilterNumber(operator='exact',),
 'title': _('field1'),
 }),
 ('field2', {
 'filter': FilterText(size=15),
 'title': _('field2')}),
 ('field3', {
 'title': _('field3'),
 'filter': FilterDate(),
 }),
)

For a table report this class has the following structure:

from freppledb.common.report import *

class myReportClass(TableReport):
 template = 'myreporttemplate.html'
 title = 'title of my report'
 basequeryset = ... # A query returning the data to display
 model = Operation
 rows = (
 ('field1',{
 'filter': FilterNumber(operator='exact',),
 'title': _('field1'),
 }),
)
 crosses = (
 ('field2', {'title': 'field2',}),
 ('field3', {'title': 'field3',}),
)
 columns = (
 ('bucket',{'title': _('bucket')}),
)

 @staticmethod
 def resultlist1(request, basequery, bucket, startdate, enddate, sortsql='1 asc'):
 ... # A query returning the data to display as fixed columns on the left hand side.

 @staticmethod
 def resultlist2(request, basequery, bucket, startdate, enddate, sortsql='1 asc'):
 ... # A query returning the data to display for all cells in the grid.

	
Create a template to visualize the data.

For a list report the template has the following structure:

{% extends "admin/base_site_list.html" %}
{% load i18n %}

{% block frozendata %}
{% for i in objectlist1 %}
<tr>
<td>{{i.field1}}</td>
</tr>{% endfor %}
{% endblock %}

{% block data %}
{% for i in objectlist1 %}
<tr>
<td>{{i.field2}}</td>
<td>{{i.field3}}</td>
</tr>{% endfor %}
{% endblock %}

For a grid report the template is identical, except that you need to inherit
from the admin/base_site_table.html template.

	
Map the view as a URL.

The syntax for adding a report now refers to the generic view, and we pass
the report class as an argument

urlpatterns = patterns('',
 ...
 (r'^myreport/([^/]+)/$', 'freppledb.common.report.view_report',
 {'report': myReportClass,}),
 ...
)

	
Update the menu structure.

This step is identical to the general case.

Translating the user interface

This section provides step by step instructions on how to translate the user interface to your favourite language.

Hint

We are very keen on receiving translations for additional languages. And it’s an easy way for you to contribute
back to the frePPLe community.

For translators

1. Install a translation editor

For the translation process you should install an editor for gettext catalogs (.po files).

Highly recommended is the free Poedit tool [https://poedit.net/].

2. Start translating

Pick up file the translation file of the language you wish to update from the github
source code repository. All terms to be translated are collected in this single file.

	French: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/fr/fr.po

	German: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/de/de.po

	Hebrew: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/he/he.po

	Italian: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/it/it.po

	Japanese: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/ja/ja.po

	Dutch: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/nl/nl.po

	Portuguese: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/pt/pt.po

	Brazilian Portuguese: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/pt-br/pt-br.po

	Russian: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/ru/ru.po

	Spanish: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/es/es.po

	Simplified Chinese: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/zh-hans/zh-hans.po

	Traditional Chinese: https://raw.githubusercontent.com/frePPLe/frepple/master/freppledb/locale/zh-hant/zh-hant.po

Open the file with the editor you installed in step 1, and start translating. The terms will
already “pre-translated” with an automated translation engine. Your job as a translator is to
review the pre-translated strings (marked as “needs work”), change them where needed and remove
the “needs work” flag.

Some strings may include HTML tags or Python code, e.g.:

%(title)s for %(entity)s

In this case just copy the entire string and translate “for”, resulting in:

%(title)s para %(entity)s

3. Submit your translation

You can submit your translation a) either with a pull request on github, or b) by posting the file to the
frePPLe user group [https://groups.google.com/forum/#!forum/frepple-users].

For developers

1. Extract all translation strings

The translatable strings are present at many places in the source code. A first
step consist of collecting of these translatable strings in a single file which
translators can update.

The following command runs this string collecting.

make extract-translations

2. Add support for an additional language

Start by copying the translations files of an existing language. You need to copy
a subdirectory from freppledb/locale and 2 files from freppledb/common/static/common/po.

The possible language codes can be found on the World Wide Web Consortium [http://www.w3.org/TR/REC-html40/struct/dirlang.html#langcodes].

You can contact the frepple team and ask them to help you with a pre-translated file. It will makes the
translation job much easier and faster.

If you want to create installation packages including the new language then the installer also needs
updating. The files contrib/installer/parameters.ini and contrib/installer/frepple.nsi need straightforward
editing.

To activate it you must also add the new language to djangosettings.py (or bin\djangosettings.py in
the binary Windows installation). Add the new language code and description to the variable LANGUAGES:

LANGUAGES = (
 ("en", _("English")),
 ("fr", _("French")),
 ("de", _("German")),
 ("he", _("Hebrew")),
 ("it", _("Italian")),
 ("ja", _("Japanese")),
 ("nl", _("Dutch")),
 ("pt", _("Portuguese")),
 ("pt-br", _("Brazilian Portuguese")),
 ("ru", _("Russian")),
 ("es", _("Spanish")),
 ("zh-hans", _("Simplified Chinese")),
 ("zh-hant", _("Traditional Chinese")),
)

3. Let the translators do their work

Commit the changes from the previous step, and let the translators bring the
translation files freppledb/locale/<LANGUAGE>/<LANGUAGE>.po up to date.

4. Compile the translations

Run the following command to compile the output of the translators in the
right format in various data files.

make compile-translations

Configuring multiple models in the user interface

FrePPLe supports working with multiple models in the same web application.

This setup can be useful for the following very typical use cases:

	
What-if models to support scenario analysis.

A planner can do all kinds of what-if analysis in a copy of the production model.

[image: What-if scenario's]

	Separate models for separate product lines or different factories.

When the interaction between product divisions or plants is relatively low, it might
be useful to create seperate models for the planners to work in. This allows their
business processes, planner workflows and data to be more loosely coupled.

[image: Multiple models]

The following steps are required to configure a multi-model setup.

	Create additional databases

The database administrator needs to create a PostgreSQL database for each model.

See http://www.postgresqltutorial.com/postgresql-create-database/ for detailed steps.

	Update the djangosettings.py configuration file

The connection details of each schema need to be added as a seperate section for the DATABASES
parameter in the file settings.py.

For instance:

DATABASES = {
'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'frepple',
 'USER': '',
 'PASSWORD': '',
 'HOST': '',
 'OPTIONS': {},
 'CONN_MAX_AGE': 60,
 'PORT': '',
 },
'scenario1': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'scenario1',
 'USER': '',
 'PASSWORD': '',
 'HOST': '',
 'OPTIONS': {},
 'CONN_MAX_AGE': 60,
 'PORT': '',
 },
}

Some guidelines need to be considered when setting up the schemas:

	
The number of schemas in the web application is unlimited.

Extra schema’s have NO impact on the performance of the user interface.
Only the disk space used by the database will increase.

	One of the schemas MUST be called ‘default’.

All information on user logins, user preferences and browser sessions
are stored in this default schema.

	Use short and unambiguous names for the additional schemas.

Since the names will be used as a prefix in the URLs they should be short
and can’t contain any special characters.

Good examples: ‘scenario1’, ‘plant1’…

Bad examples: ‘scenario/1’, names with non-ASCII characters,
names with spaces…

	The databases can be located on different database servers or database
instances, but this is not required.
This could be useful for instance to avoid that users running large tasks
on what-if scenarios impact the performance of the regular production model.

	Initialize the new schema(s)

If not done yet, the default schema is initialized with the following command.
It creates all tables, indices and other database objects.

frepplectl migrate

To load the demo data in this database you run:

frepplectl loaddata demo

To initialize the additional schemas you copy the default schema with the
command below. The command can also be executed from the user interface in
the execution screen: see Execution screen

frepplectl scenario_copy default my_schema

The copy process might take a while for bigger datasets. If it takes too long,
you should consider running the copy as an automated batch job during quiet hours.

	Restart the web server

After a change in the djangosettings.py file, the web server needs to be restarted.

	Review user access and permissions

Access rights are controlled for each scenario separately.

After running the command scenario_copy only 1) the user executing the command
and 2) superusers in the source scenario are marked active in the new scenario.
Other users can be granted access by marking them active in the new scenario, and
by assigning them appropriate privileges in it.

Upgrade an existing installation

FrePPLe allows migrating an existing installation to a new release without any loss of data.

This page documents the steps for this process.

	Generic instructions

	Debian upgrade script

Generic instructions

	Backup your old environment

You’re not going to start without a proper backup of the previous installation,
are you? We strongly recommend you start off with a backup of a) all PostgreSQL
databases and b) the configuration file djangosettings.py.

	Upgrade the PostgreSQL database

FrePPLe requires postgresql 9.5 or higher. If you’re on an older version, upgrading
your PostgreSQL database is the first step.

	Install the new python package dependencies

Different frePPLe releases may require different versions of third party
Python libraries.

Minor releases (ie the third number in the release number changes) never require
new dependencies, and you can skip this step.

The following command will bring these to the right level as required for the
new release. Make sure to run it as root user or use sudo (otherwise the packages
will be installed locally for that user instead of system-wide), and to replace 5.0.0
with the appropriate release number.

sudo -H pip3 install --force-reinstall -r https://raw.githubusercontent.com/frePPLe/frepple-data-admin/1.0.0/requirements.txt

	Install the new frePPLe release.

sudo -H pip3 install data-admin

	Update the configuration file djangosettings.py

The installation created a new version of the configuration file. Now,
you’ll need to merge your edits from the old file into the new file.

In our experience an incorrectly updated configuration file is the most
common mistake when upgrading. So, take this edit seriously and don’t just use
the old file without a very careful comparison.

	Migrate the frePPLe databases

The following command needs to be repeated for each scenario database (as
found in the keys in the DATABASES setting in /etc/frepple/djangosettings.py).

frepplectl migrate --database=default

On a fresh installation, this command intializes all database objects. When
running it on an existing installation it will incrementally update the
database schema without any loss of data.

	Restart your apache server

After a restart of the web server, the new environment should be up and running.

Tip

It is not possible to have multiple versions simultaneously on the same server.

Debian upgrade script

The commands below are a convenience summary of the above steps implemented for
a Debian/Ubuntu Linux server.

sudo apt-get -y -q update
sudo apt-get -y -q upgrade

Upgrade of the PostgreSQL database isn't covered in these commands.

sudo -H pip3 install --force-reinstall -r https://raw.githubusercontent.com/frePPLe/frepple-data-admin/1.0.0/requirements.txt

Download the debian package of the new release here.

sudo -H pip3 install data-admin

Manually edit the /etc/frepple/djangosettings.py file. The previous line
keeps the old configuration file, which may not be ok for the new release.

frepplectl migrate --database=default

Repeat the above line for all scenarios that are in use

sudo service apache2 reload

Release notes

2.0.0 (Upcoming release)

	Corrected packaging.
The previous release was only working when checking out from git.
This new release can also be installed and run from PyPi.

1.0.0 (2021/04/18)

	Initial release, copied out of frePPLe 6.13.0.

Index

 _images/excel-data-source-url-3.png
Access Web content

Anonymous @ https://manufacturing.frepple.com/data/input/man.
Username

Password

Select which level 10 apply these settings to
nizational account hitps//manufacturing frepple.com/ B

cancel

_images/excel-data-source-url-4.png
— Lo

https://manufacturing.frepple.com/data/input/manufacturingorder/?format

i Origin Delimiter Dsta Type Detection
65001: Unicode (UTF-8) = [comma ~ | [Based on first 200 rows. - (K]
Reference IventoryStatus fem location _ Operation start Date Endoate Duraton Nt _

185 0 varmished chic factory Applyvarmish for chair| 10/5/2020 122000AM 10/5/2020 G20:00 AM 06:00:00 061

ass ull vamshed chai factory | Apply vamsh forchae | 10/5/2020 G20:00 AM _ 10/7/2020 22000AM 440000 443

a7 null vamshed chair factory Apply varnish forchar | 10/21/20205:30:00 AM 10/23/2020 11:3000AM 500000 501

a8 ull vamshed chai factory | Apply varish forchale | 10/23/2020 100,00 M 10/27/2020 300:00 M 980000 501

a8 null vamshed chair factory Apply varnsh forchai11/5/2020 20000 P 11/5/2020 #00:00 7M. 930000 501

0 null | vamished char factory Applyvamish forchar | 11/5/2020 400:00 M 13/11/2000 6:00.00PM 500000 501

a1 null | vamished chai factory Applyvamish forchar | 12/8/2020 400:00 PM | 12/10/2020 600:00PM 500000 501

02 null varnished chai factory Apply varnish forchar | 1/7/2021 20000 M 1/11/2021 #00:00 M | S30000 501

o1 o e focory_ Assembe chair 9/1/2021 1200000 5/1/2021 200:00 P 02:0000 024

0 ull varnished chai factory Apply varnish forchar | 1/11/2021 40000 M 1/13/2021 G00:00 7M. 500000 501

a9 oull varihedchair factory Apply varnshforchar 2/5/202140000PM 2/5/2021 6:0000PM 980000 501

a5 null vamshed chai factory Applyvarnsh forchair | 3/5/2021 S:00:00AM | 3/5/2021 #00:00 M. 1030000 55

a6 ull vamished chai factory Apply vamish forchaie | 3/5/2021 40000 M 3/11/2021 600:00 M 500000 501

197 null varmshed chai factory Applyvarnsh forchair 4/6/2021 90000 P 4/12/2021 G000 7M. 930000 451

8 il vamished chai factory Applyvamishforchaie 5/4/2021 90000 M 5/7/2023 4:00004M 550000 551

199 null varnshed chai factory Apply varnsh forchai | 5/11/2021 200:00AM 5/12/2021 G000 7M. 400000 401

20 ull varmished chai factory Apply varnish forchar | G/6/2021 50000 M 6/5/2021 7:0000AM 110000 111

so1 null vamshed chair factory Applyvamishforchair 6/9/2021 700:00AM _6/10/2021 G00:00PM 350000 351

22 null varmished char factory Applyvarish forchar | 6/10/2021 600/00PM _6/11/2021 600.00PM 240000 241
B null vormished char factory Apply varnsh for chalr | 7/7/2021 50000 P 7/3/20215:0000PM 059090 01,

K >
Tonsamons | |

_images/edit-table.png
Select action v B.@H

Sales orders

~ Neme em loaion Customer Saws Description Category
[]| Demand 4 » product » Customer near factory 1 » open -~
[]| Demand 11 » product » Customer near factory 2 » open
(] Demand 6 » product » Customer near factory 2 » open
[]| Demand 5 » product » Customer near factory 1 » open
[]| Demand3» product » Customer near factory 1 » open
||| Demand 8 » product » Customer near factory 2 » open
[]| Demand 13 » product » Customer near factory 2 » open
||| Demand 12 » product » Customer near factory 2 » open
[Demand 7 » product » Customer near factory 2 » open
||| Demand 10 » product » Customer near factory 2 » open '
< I — ’
4 « Page 1 of 1/ y View 1 - 38 of 38

_images/excel-data-source-url-2.png
From Web

@gasic O Advanced

URL
put/manufacturingorder/?format=csvasalcolumns=trueiscenarios=default]

cancel

_images/execution-backup.png
Scenario management

Back up the database

Dump the database contents to a file.

Emntv fhe Aarahacea

_images/execution-buckets.png
Create time buckets for reporting.

Start date

End date

Week starts on

Day name

Week name

Month name

Quarter format

Year format

2013-01-01

2021-01-01

Monday ~

9%Y-%m-%d

Soy WW

%0 %y

%y Q%q

%Y

_images/excel-data-source-url-5.png
File

Table Name:

Home

Page Layout

Formulas

i3] Summarize with PivotTable

Data

Book2 - Excel

Review

View

Design

B =

Q Teiime

] Header Row.

First Column

] Fiter Bution | [

: ; = HRE - ®
formatcsvall] | Remove Duplicates] Total Row Last Column
Insert | Export Refresh Quick
& ResizeTable | G Convertto Range: Sicor | o=] Banded Rows (] Banded Columns S
ropertes Toots Extemai Tabie Data Tablesye Options Tale syes
A - Reference
A [c) 3
1 Workbook Queries
2 485 ‘Apply varnish for chair 1
3 436 factory Applyvarnish forchair 1 9%
4 87 factory Apply varnish for chair O Zormat-revRalienliimne=tn1o8
5 283 factory Apply varnish for chair 10/ oseowl ©
6 89 factory Apply varnish for chair
7 290 factory Applyvarnish for chair | 11, B Edit
s 01 e e X Delete
9 492 actory. | Applyvamish forchair | 12| o] Rename
10 403 Tactory 0, AeplyvamBhiforchairl 1] —
1 494, factory Apply varnish for chair 1/1 —
2 405 Tactory 11 Peplyvamshiforchairl 1.2] Losd To
13 496 factory _ Apply varish forchair | Duplicate
14 497 factory Applyvarnish for chair 3, i Reference
15 408 Factory S Apply e mish forchai 4] B vee
16 499 factory _ Apply varnish for chair 5, T ppend
7 509 factory_ | Applyvamish forchair | 9] =
18 500 factory _ Apply varnish for chair 5, Move To Growp +

[Sheett |_sheetz

Average: 2651585851

Count: 5699

sum: 5406583551 |V EE

ena.

100%

_images/excel-data-source-url.png
Fomulas Review View Add Q el me whatyouwant to do

D [Show Queries "’r\ [Connections. n ’ﬁ Y T ‘m
§ o | 8 Eooperie | A2 T g
isting New = KeYleshj - %l Sort Filter Textto Flash
vections | Query= [Recent Sources All- e £ Y Advanced | Columns Fill
e sonaier
[Fromeie ,
S
5 [AR

From Online Services

[4 Fromotersaurces » | L promwen from web
Importdta fom web page

5 comtinequeres > | [y From 0omtaresa

B owesesseis | [oo
B query Ogtions

-

_images/execution-emailreport.png
Emails the selected reports to a comma separated list of recipients. Files are zipped and
attached to email.

le name Size Last Modified
capacityreport.csv 11.4KiB 2020-04-02 11:10AM
distributionorder.csv 3.1KiB 2020-04-02 11:10AM
nventoryreport.csv 59.8KiB 2020-04-02 11:10AM

manufacturingorder.csv 5.4KiB 2020-04-02 11:10AM
operationplanmaterial.csv 10.9KiB 2020-04-02 11:10AM
operationplanresource.csv 3.3KiB 2020-04-02 11:10AM
problems.csv 1.6KiB 2020-04-02 11:10AM
purchaseorder.csv 1.0KiB 2020-04-02 11:10AM

Emails: |[your@company.com

_images/execution-erase.png
Erase selected tables in the database.

(8]

ales - Sales orders
¥isales - Items
¥ISales - Customers

¥ISales - Forecast

ales - Forecasted demand

nventory - Buffers
“Inventory - Inventory planning parameters

@Icapacity - Resources

apacity - Skills

apacity - Resource skills
@Icapacity - Setup matrices
@Purchasing - Purchase orders
urchasing - Suppliers
urchasing - Item suppliers
“IDistribution - Distribution orders
“IDistribution - Item distributions

Manufacturing - Operationplans

Manufacturing - Locations
@Manufacturing - Calendars
@Manufacturing - Calendar buckets

@Manufacturing - Operations

Manufacturing - Flows

Manufacturing - Loads
@Manufacturing - Suboperations
()Admin - Parameters

(JAdmin - Buckets

(DAdmin - Bucket dates

_images/execution-export.png
inasi dsheet.
Download all input data in a single sprea

Sales - Sales orders

Sales - Items

Sales - Customers

Sales - Forecast

Sales - Forecasted demand
Inventory - Buffers

Inventory - Inventory planning parameters
Capacity - Resources

Capacity - Skills

Capacity - Resource skills
Capacity - Setup matrices
Purchasing - Purchase orders
Purchasing - Suppliers
Purchasing - Item suppliers
Distribution - Distribution orders
Distribution - Item distributions
Manufacturing - Operationplans
Manufacturing - Locations
Manufacturing - Calendars
Manufacturing - Calendar buckets
Manufacturing - Operations
Manufacturing - Flows
Manufacturing - Loads
Manufacturing - Suboperations
Admin - Parameters

Admin - Buckets

Admin - Bucket dates

nav.xhtml

 Table of Contents

 		
 frePPLe data admin

 		
 Getting started

 		
 Installation

 		
 Prerequisites

 		
 Install the Python package

 		
 Create a PostgreSQL database user

 		
 Running the example app

 		
 Edit the djangosettings.py configuration file

 		
 Initialize the database

 		
 Run the web server

 		
 Your first app

 		
 Initialize your app

 		
 Register your app

 		
 Define the database models

 		
 Create tables and fields in the database

 		
 Define a REST API for your models

 		
 Create editing forms for your models

 		
 Define new reports

 		
 Register the URLs of the new reports

 		
 Add the reports to the menu

 		
 Add demo data

 		
 Add custom administration commands

 		
 Add unit tests

 		
 Even more information!

 		
 User guide

 		
 Logging in and logging out

 		
 Home screen

 		
 Changing your password

 		
 Navigation

 		
 Data maintenance

 		
 Filtering data

 		
 Sorting data

 		
 Favorites

 		
 Selecting time buckets

 		
 Exporting data

 		
 Data source URL

 		
 Importing data

 		
 Customizing a report

 		
 User preferences

 		
 User permissions and roles

 		
 Messages

 		
 Inbox

 		
 Tasks

 		
 Data commands

 		
 Administrator commands

 		
 Developer commands

 		
 Execution screen

 		
 What-if scenarios

 		
 Selecting a scenario

 		
 Scenario management

 		
 Access rights and permissions

 		
 Integration guide

 		
 Excel files

 		
 CSV text files

 		
 Database access

 		
 REST API

 		
 List API from your browser

 		
 Detail API from your browser

 		
 API from the command line

 		
 Command line

 		
 Remote commands

 		
 Reference

 		
 Authentication

 		
 Example

 		
 Developer guide

 		
 Creating an custom theme

 		
 Adding or customizing a report

 		
 General case

 		
 Using the frePPLe generic report

 		
 Translating the user interface

 		
 For translators

 		
 For developers

 		
 Configuring multiple models in the user interface

 		
 Upgrade an existing installation

 		
 Generic instructions

 		
 Debian upgrade script

 		
 Release notes

 		
 2.0.0 (Upcoming release)

 		
 1.0.0 (2021/04/18)

_images/execution-import.png
Import input data from a spreadsheet.
The spreadsheet must match the structure exported with the task above.
Data file:

Choose File SR Y]

_images/execution-importfilesfromfolder.png
Import CSV files from the configured data folder. The file names must match the names
of data objects and the first line in the file must contain the feld names.
name Size Changed [+]

gistributionorder csv gz 44KB 2017-07-17 144612 a
purchaseorder.csv.gz 30KB 2017-07-17 14:46:12 a

_images/execution-exportplantofolder.png
B Exports the plan (purchase orders, distribution orders and manufacturing orders) as a set

of CSV files.
File name Size Changed
distributionorder csv gz 24KB 2017-07-17 144612 a
manufacturingorder.csv.gz 79KB 20170717 14:46:12 a

purchaseorder csv gz 30KB 20170717 144612 a

_images/execution-fixture.png
LiipLy tic Udidabastc

Load a dataset

- Load one of the available datasets to the current database.
Laun

Generate buckets

_images/execution.png
Task status

2 generate plan 20160312 18:19:19 | 2016-03-12 18:19:23 | 20160312 18:19:29 Done -

2 load dataset 20160312 18:12:20 | 2016-03-12 18112142 | 2016:03-12 18:12:42 Done .

2 empty database 2016-03-12 18:12.05 | 2016-03-12 18:12:09 | 20160312 18:1212 Done

3 generate plan 2016-03-12 18:06:46 | 2016-03-12 18:06:50 | 20160312 18:06:57 Done

2 generate plan 2016-03-10 17:56:01 | 2016-03-10 17:56:06 | 2016-03-10 17:56:12 Done .

<« I— ’
W« ipage[t Joft i m n View 1-28 0f 28

Launch new tasks

Load frePPLe from the database and live data sources...
and create a plan in frepPLe...
and export results.

Plan type
Generate forecast @

Generate inventory planning parameters @

©

Generate production plan
© Constrained plan @

® Unconstrained plan @

Evaluate stock position @

Constraints

Capacity: respect capacity limits

Material: respect procurement limits

Lead time: do not plan in the past

Release fence: do not plan within the release time window
Web service ©

© Keep active in memory

Live data sources ©

Read Write
odoo O O

_images/exporting-data-scenarios.png
F EPPLE Sales Inventory Capadi Purchasin; Manufacturin Admin_ My Reports Help

Export CSV or Excel file
Q Seal User Admin

Cockpit » My Reports » » Test » Task Status » Export format Scenarios to export I Production ~

® Spreadsheet list Production Export as CSV or Excel

O CsVlist O scenariol

fi
Selectacton ~ Data source urt: anpaEnnan

Sales orders

SAVE

[] Names? Item Logatio ~"ttp://localnost:8000/ da [y | bue Delay Planned¢ Deliv
[] Demand01» roundtable > | shop2» 7-30 00:00:00 - 20 | 202008
[]Demand 02> squaretabled shop2» | 82900:00:00 10 20200
[] Demand 03» chair» shop2» 9.2900:00:00 - 10 | 20200
[] Demand04» squaretabled shop 1 " CUSKOMFTEAFSHOPT¥ | GRS "="30m"202009.28 00:00:00 30 | 20200
[] Demand05» roundtable» | shop1» | Customer nearshop 1% open 20 | 2020-11-03 00:00:00 - 20 | 202011

_images/execution-scenarios.png
Status

Scenario Action ° Label @ Last modified ©
Default inuse [Production | 2020-03-26 10:12:49
Scenariol Inuse [scenariol 2020-03-26 10:06:07

Scenarioz [NVEURS inuse [scenario2 | 20200326 10:58:43

Scenario3 Free [scenario3 |

_images/execution-scheduletasks.png
Run 2 sequence of tasks, and schedule it to run automatically.

Name Next scheduled run
Atesttask 2020.05-08 03:00:00
Email weekly performance reports 2020.05-10 00:00:00
Name Load, run and export
os e weomars o
weomars o
~plantype=1 ~constraint=13 8

Startome 04:00:00

Weeklyscnedule @ Mon @ Tue @ Wed @ Thu [@ Fri (J Sat [Sun

Email onsuccess | frepple-users@yourcompany.com

Email on failure frepple-users@yourcompany.com

_images/exporting-data.png
FREPPLE Sales Inventory Capacity Purchasing Manufacturing Admin My Reports Help

Export CSV or Excel file

User Admin
Export format
Cockpit » My Reports » » Test » My Preferences
@ Spreadsheet list
O Csviist Export as CSV or

Sales orders file

Data source url: |http://localhost:8000/dat ha
- g) oooooonaEn

D Demand 01 » round table » shop 2 » 7-3000:00:00 SRS 20 2020-09-2f

[] Demand02» squaretable» shop2» | Customer nearshop2 ¥ Gpen 70120200829 00:00:00 [EEENNEENEE 10 | 2020092
[] bemand03» chair » shop2» Customer near shop 2 » open 10 | 2020-09-29 00:00:00 10 | 2020092
[[] pemand 04> squaretable shop1» Customer near shop 1 » open 30 | 2020-09-28 00:00:00 30 | 2020092

20 2020-11-0.

D Demand 05 » | round table » shop 1% Customer near shop 1 » open 20 2020-11-03 00:00:00

_images/favorite.png
Items firered wnere Name conains]

Another favorite

[Altitems » My first favorite. 8

[cnairleg» furniture component chair

] rinded wooden panel raw material table

[round cable » furniture table Allicems »
(] screws» raw material general Allicems »
] square cable » furniture table Allicems >
]| able teg » furniture component table Allicems »
[wooden beam » raw material general Allicems >
[wooden panel » raw material table Allicems »
[zezezez» Allicems >

e |

K «Page[1 Jof 1 M

»
View 1-100f 10

_images/filtering.png
Search Q

Sales orders.

i EREN cys x [Prority equl EXNN ~ (] item contains N < EX

Select action ~

E— s -

(] Demand 01> round table » 20-10-01 00:00:00
] Hiscory 100 » ETHELED 3-29 00:00:00
] Hiscory 101 » round table » 12004-29 00:00:00
~|[withindays v|[8 a8
] Hiscory 102 » ETHELED 5-30 00:00:00
Priority ~|[equal vz a8
(] Hiscory 103 » round table » 1200629 00:00:00
fem v|[contains v | table a8
(] Hiscory 104 » round table » e o <6 B 7-30 00:00:00
(] Hiscory 105 » round table » 2008-29 00:00:00
(] Hiscory 130 » SrEEED 18.09-30 00:00:00
(] Hiscory 131 » square wble ¥ 18-10-31 00:00:00
KL »
M« Page(1 Jof 1M M View 1 - 48 of 48

_images/inbox.png
=i
=
S
%

© supsier

secaurce packin factory 2

ooooooQoao
~
i
g
N

zezez
Changed maximum.

Changed description
Changed cost.

Changed description
Changed description
Changed description and cost

Uploaded a picture of this product pngd

@ 20min
@ 20min
@ 20min
@ 20min
@ 20min
@ 20min
@ 20min
@ 20min

1 hour, 23 minutes
1 hour, 34 minutes
1 day, 8 hours,

1 day, 8 hours,

1 day, 23 hours

1 day, 23 hours

1 day, 23 hours

2days, 1 hour

_images/login.png
Username:

admin

Password:

g in

O Remember Me

Eorgot your password?

_images/home.png
Cockpit (o]
Manufacturing
5 .

4 Type Count Weight

3
2 early 3 9
1
01— T T T T ™ late 4 64
1
0/0$ 0/0% 0/0% ‘
confirmed proposed proposed
orders orders within orders within
7 days 30 days
Purchasing

_images/importing-data.png
Q Search

Sales orders Load an Excel file or a CSV-formated text file.

The first row should contain the field names.
SAVE

Select action ~ al+]+]@]=]+]e]/]7]

[First delete all existing records AND ALL RELATED TABLES

] Name=1 Item | Jue Delay Planned(DeliveryDate Priority
D Demand 01 » round table » shog 106 00:(- 20 2020-06-08 20:34:12 1
D Demand 02 » square table » sho; ;)6 00: - 10 2020-07-06 00:00:00 1
D Demand 03 » chair » sho; ;)6 00: 10 2020-08-06 00:00:00 1
D Demand 04 » square table » sho; ;)5 00: - 30 2020-08-05 00:00:00 1
D Demand 05 » round table » sho; or drop them here. :|0 00: 20 2020-09-10 00:00:00 1
D Demand 06 » chair » sho; ;)7 00: - 10 2020-08-05 00:00:00 1
D Demand 07 » chair » sho; ;)5 00: 2020-06-05 00:00:00 1
D Demand 08 » square table » sho; ;)5 00: 2020-06-08 08:34:12 1
D Demand 09 » round table » Shl);‘ , , , , ;)5 00: 2020-08-05 00:00:00 1
D Demand 10 » chair » shop 2 » Customer near shop 2 » open 10 2020-06-05 00: 2020-06-05 08:34:12 1

D Demand 11 » chair » shop 2 » Customer near shop 2 » open 10 2020-06-05 00: 2020-06-11 09:00:00 1

_images/my_command.png
Task status

B my_command | 2020-02-20 15:31:17 | 2020-02-20 15:31:19 | 2020-02-20 15:31:19 Done My task message admin B
8 my_command | 2020-02-20 15:30:10 | 2020-02-20 15:30:12 | 2020-02-20 15:30:12 Done My task message admin
" mv command__| 2020-02-20 15:29:15 | 2020-02-20 15:29:20 | 2020-02-20 15:29:20 Done admin -
M 4 Page[1 Jof11m W View1-90f9

Launch tasks

A description of my command

_images/my_fixture.png
Load one of the available datasets.
Execute plan after loading is done

C -

dates

demo
flow_line

jobshop
manufacturing demo
my_app_data
parameters

unicode_test

_images/messages.png
Item XYZ: Comments

Edit Supplypath Whereused Plan Inventory Inventorydetail ~Messages

Add an attachment | No file chosen

‘admin (admin admin)Nov. 14, 2020, 5:23 p.m.

2 | Uptosing en inege of our new viceer. ‘

‘admin (admin admin)Nov. 14, 2020, 5:20 p.m.

[comee con \

‘admin (admin admin)Nov. 12, 2020, 6:23 p.m.

(et ssroson. \

_images/multimodel.png
SRS

<SS

i
HTTP / HTTPS

Common user interface

Model1 I Model2 I Model3

Internal
integration

External
integration

_images/my_rest_api.png
[c—
FREPPLE """ *

es Inventory Capacity Purchasing Manufacturing Admin

Cockpit » My Preferences » My Model My First Data Record » My Models » Log File 10 » Log File 11 » Log File 12 » Task Status » REST API Help » List API For My_model

List API for my_model

HTTP request:
GET /api/my_app/my_model/

HTTP response headers

HTTP 200 0K

Allow: GET, POST, PUT, PATCH, DELETE, HEAD, OPTIONS
Content-Type: application/json

Vary: Accept

HTTP response content
[
{

“name" "my first

a record”
charfield": "zorro was here”,
"booleanfield": true,

“decimalfield": "11.00000000"

Make a GET request to read my_model object(s)

Make an OPTIONS request to see all fields on the my_model object

Make a POST request using a HTML form to create a new my_model object

Make a POST request in raw format to create a new my_model object

Make a PUT request using a HTML form to update one my_model object

Make a PUT or PATCH request in raw format to update one or more existing my_model objects

Make a DELETE request to delete one or more existing my_model objects (requires filtering)

Custom

Help

Q

User Admin

_images/my_view.png
[c—
FREPPLE MyApp | Sales Inventory Capacity Purchasing Manufacturing Admin Custom Help QSearch User Admin

Cockpit » AddMyMog My Models { Model My First Data Record » Task Status » My Models
| Uik To My Company
My models —

[my first data record » 20170 was here Yes 1

_images/my_model.png
My model my first data record: Edit

Edit Comments History

-‘ Save and 2dd anotner H Save and continue editing

Neme: |y first data record
Cnarfield: | 2orro was here |
Asample character field
Booleanfield
Asample boolean field
Decimalfield:

11.00000000

Asample decimal field

_images/sorting.png
Closed order 1 »

Closed order 10 »

Closed order 11 »

Closed order 12 »

Closed order 13 »

Closed order 14 »

Closed order 15 »

0000/0/0/0]a

Closed order 16 »

_images/time-buckets.png
0X

:

Time buckets

Bucket size

O From

@® 6

month v

2013-01-21 o

months ~

2016-12-31

after plan current date

Cancel

-

oX » factory 2 »
Y Consumed

_images/navigation.png
Sales order - 14 matches default v

Demand 1
Cockpit Demand 10
Demand 11
Manufacturing Demand 12
Demand 13
I [[pE—
Demand 2
th Ty} Demand3 eight
1.5k ~ | Demand4
% - D d 5 !
eman
500 actory 1 13.20% —
01— T T T T late B 118
< < < < <
5 8 & & 3 }m& 1.21%
0/0% 0/0$ 25/
B e o
confirmed proposed -
orders orders within proposed
7 days orders within
30 days
Purchasing o

_images/scenario-selection.png
User admin

Test
scenario3
demo

default

_images/user-preferences.png
My preferences
mEEEE | Derzctavtomarcally ~ |
Pagesze: (10 ‘
Number of records per page
hemes | Orange ~ |
Avatar:

No file chosen

Changepasshord: [014 passuora ‘

| New password

| New password confirmation |

Your password can't be too similar to your other personal information.
Your password must contain at least 8 characters.

Your password can't be a commonly used password.

Your password can't be entirely numeric.

_images/user-group.png
Add group: Edit

Name:
Sales

Permissions:
[Available permissions @] Chosen permissions &]
| Qfe \ -

o T
input | sales order | Can add sales order
input | sales order | Can change sales order
input | sales order | Can delete sales order -le o
o acrioe | o ioiss alae e

(€]

Choose all &) Remove all

Hold down "Control", or "Command" on a Mac, to select more than one.

_images/user-list.png
FREPPLE S 'memoy Cepscry Puchasing Manufscuurig Admin Help 5ovn

Cockpit » My Preferences » Users

User Admin

scenariol ~

Users
SAVE o]+ [al=[+]e]/]-]
» | admin e Tue 12 12
1 T T 20171212 13:01:14 | 2017-12-12 1452550
[J| 2» |JonnLennon john@abbeyroad.com True True 2017-12-1214:55:11
o 3 GeorgeHarrison george@abbeyroad.com True False 20171212 14:56:12.
[a» RingoStarr ringo@abbeyroad.com False False 2017-12-12 14:56:37
« 4ipage[1 Jof 11 m M

View1-4of4

_images/user.png
User 0: Edit

Edit Comments History

Saveand add another || Save and continue editing

Usermame: [sgmin
Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.
Password algorithm: pbkdf2 sha25e iterations: 20000 salt: vADGEE* -+ hash: SqBy**4# 4k rrrir s bbbk k ke S
Raw passwords are not stored, so there is no way to see this user's password, but you can change the password using this form.
Personal info
R P]
Lscoame: [agmn]
Email address:

[sourdcompanyiom |

Permissions in this scenario

" @ Designates whether this user should be treated as active. Unselect this instead of deleting accounts.

Superuser status
s Designates that this user has all permissions without explicitly assigning them.
Groups: ; The groups this user belongs to. A user
[Available groups @ 1 [Chosen groups & | will get all permissions granted to each
QfFie] o | oftheirgroups. Hold down “Contror”,
or "Command” on a Mac, to select
- ‘more than one..
v|e v
o
Choose all © Remove

User permissions:

. - Specific permissions for this user. Hold
Available user permissions & 1 [Chosen user permissions & || e e ene
Qe] & | Mactoselect more than one.
admin | log entry | Can add log entry N
admin | log entry | Can change log entry.
admin | log entry | Can delete log entry - -
auth | group | Can add group (5]
o
Choose all © © Remove

Important dates

Lastlogin: March 12,2016, 8:37 pm.

Datejoined: Jan. 1, 2000, midnight

_images/whatif.png
i &

Actual plan

Analysis overtime
on bottleneck resource

. Longterm
capacity planvi
Longterm
capacity planv2

L

_static/plus.png

_static/file.png

_static/minus.png

_images/change-password.png
My preferences

LemEreEe English +
Page size: 100
Number of records per page
Theme:

Orange

Change password: 0ld password

New password

New password confirmation

Save

_images/customizing-a-report.png
Customize
default

Sales orders
SAVE UNDO Select acti o -~ + V| F
-- electaction Name I Source a.@ﬂ..
I Neme Vinimom shipment | Description
[J/jobo1»
D Job 02 » || Customer Maximum Lateness
[[]/Job03» Location
[J/Jobo4» |I
[J/Jjobos»
[Jobo6» |I Frozen columns
[J|Jjobo7»
SE
[J/Joboo»
E] Job 10 » Item 10 » My customer » open
4 »
M« Pageof1 » M View 1-100f 10

_images/api-list-filtering.png
& > C [B 127.001:8000/api/input/demand/?quantity_gte=2008location=factory P e @ v 0 ~ :

List API for demand

HITP request.
‘GET /api/input/demand/2quantity_gte-2008Jocation=factory%202

HTTP response headers:

HTTP 200 0K

Allow: GET, POST, PUT, PATCH, DELETE, HEAD, OPTIONS.
Content-Type: application/json

Vary: Accept

HTTP response content:
[

¢
“name": "Demand O¢
“description”: null,
“category”: null,
“subcategory’: null,
roduct’,
‘Customer near factory 2,

“quantity’: 300.000000",
“priority”: 1,
“delay’:nui,
“plannedquantie’snul,
deliverydate’: nul,
“plan’ {
“pegging:[o
{

_images/api-list.png
< C | ® 127.00.1:8000/api/input/demand/

axe e v

STRPIR st ey oy vy oy i o

search

Cockpit » REST API Help » List API For Demand

List API for demand

HITP request:
‘GET /api/input/demand

HTTP response headers:

HTTP 200 0K

Allow: GET, POST, PUT, PATCH, DELETE, HEAD, OPTIONS
Content-Type: application/json

Vary: Accept

HTTP response content:
t
«
ame": "Demand 01",
jescription”: "MP",
tegory': null,
ubcategory' null,

‘Customer near factory 1
ctory 1,
014.01-01T00:00:00",

peration’ null,
uantity": 100.000000",
riority': 1,

_images/edit-form.png
Sales order Demand 4: Edit

Save and add another

Save and continue editing

teem:
Location:
Customer:
Description:
Category:
Subcategory:

Quantity:

Priority:

Status:

Owner:

Planning parameters

Delivery operation:

Minimum shipment:

Maximum lateness:

Edit

Supply path Why short or late?

Plan

Comments

History

| pemana +

Unique identifier

| product

|as

| Customer near factory 1

|as

[oescrpon

==

| Subcategory

Time:| 00:00:00 Now |

Due date of the demand

100.0000

|

Priority of the demand (lower numbers indicate more important demands)

Status of the demand. Only *open” demands are planned

Owner

Q

Hierarchical parent

| Deliver product from factory 1 or 2

|as

Operation used to satisfy this demand

Minimum shipment quantity when planning this demand

[aximum ateness

Maximum lateness allowed when planning this demand

_images/api-detail.png
}
Yz

Detail API for demand

HTTP request:
GET /api/input/demand/Demand%201/

HTTP response headers:

HTTP 200 OK

Content-Type: application/json

Allow: GET, PUT, PATCH, DELETE, HEAD, OPTIONS
Vary: Accept

HTTP response content:

{
“name": "Demand 1",
“description™: null,
“category": null,
“subcategory": null,
“item": "product”,
“location”: null,
“due": "2014-01-01T00:00:00",
"status": "open’”,
“operation": "Deliver product from factory 1 or 2",
"quantity": "100.0000",
“priority": 1,
“minshipment’: null,
“maxlateness" null

_images/api-index.png
REST API Help

This page helps developers to learn and experiment with the REST API of frePPLe.
This API allows your application to exchange information with frePPLe is efficient and direct way.

The "list API" link takes you to the object list page.
And the "detail API" link takes you to a specific object when you enter the object's primary key.

In these pages you will be able to perform HTTP requests with methods GET, POST, OPTIONS, PUT, PATCH and DELETE.
The results can shown in JSON format or as HTML in your browser.

Using a tool like 'wget’ or ‘curl’ you can access the API from the command line.
For instance, to return the list of all sales orders in JSON format:

wget —http-user=admin —http-password=admin http://127.0.0.1:8000/api/input/demand/?format=json

curl -H 'Accept: application/json; indent=4' -u admin:admin http://127.0.0.1:8000/api/input/demand/?format=json

List API Detail API

Sales - Sales orders Japi/input/demand/ » fapifinputdemand/[|y
Sales - Items Japifinput/item/ » lapilinpuuilem/l:ll »
Sales - Customers /api/input/customer/ » fapifinputicustomers[|
Sales - Forecast Japi/forecast/forecast/ » lapifforecast/forecast[|/»

Sales - Forecasted demand Japifforecast/forecastdemand/ » Japifforecast/forecastdemand/
/v

Inventory - Buffers Japi/input/buffer/ » /apifinputibuffer/| |y

Inventory - Inventory planning Japifinventoryplanning/inventoryplanning/ /api/inventoryplanning/inventoryplanning/

Capacity - Resources /apifinput/resource/ » lapifinput/resource/| |I»
Capacity - Skills Japifinput/skill/ » /api/mpuUskul/|:|/ »
Capacity - Resource skills /apifinput/resourceskill/ » /apifinput/resourceskil [|/»
Capacity - Setup matrices /apifinput/setupmatrix/ » lapifinputisetupmatris[|/»

Purchasing - Purchase orders /apifinput/purchaseorder/ » /apifinput/purchaseorder/| |/»
Purchasing - Suppliers Japi/input/supplier/ » Japi/input/supplier/ I v

